
as

as ii

COLLABORATORS

TITLE :

as

ACTION NAME DATE SIGNATURE

WRITTEN BY January 28, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

as iii

Contents

1 as 1

1.1 as.guide . 1

1.2 as.guide/Overview . 2

1.3 as.guide/Manual . 4

1.4 as.guide/GNU Assembler . 4

1.5 as.guide/Object Formats . 5

1.6 as.guide/Command Line . 5

1.7 as.guide/Input Files . 6

1.8 as.guide/Object . 7

1.9 as.guide/Errors . 7

1.10 as.guide/Invoking . 8

1.11 as.guide/a . 9

1.12 as.guide/D . 9

1.13 as.guide/f . 10

1.14 as.guide/I . 10

1.15 as.guide/K . 10

1.16 as.guide/L . 11

1.17 as.guide/o . 11

1.18 as.guide/R . 11

1.19 as.guide/v . 12

1.20 as.guide/W . 12

1.21 as.guide/Syntax . 12

1.22 as.guide/Pre-processing . 13

1.23 as.guide/Whitespace . 14

1.24 as.guide/Comments . 14

1.25 as.guide/Symbol Intro . 15

1.26 as.guide/Statements . 15

1.27 as.guide/Constants . 16

1.28 as.guide/Characters . 17

1.29 as.guide/Strings . 17

as iv

1.30 as.guide/Chars . 18

1.31 as.guide/Numbers . 18

1.32 as.guide/Integers . 19

1.33 as.guide/Bignums . 19

1.34 as.guide/Flonums . 19

1.35 as.guide/Sections . 20

1.36 as.guide/Secs Background . 21

1.37 as.guide/Ld Sections . 23

1.38 as.guide/As Sections . 24

1.39 as.guide/Sub-Sections . 24

1.40 as.guide/bss . 25

1.41 as.guide/Symbols . 26

1.42 as.guide/Labels . 26

1.43 as.guide/Setting Symbols . 26

1.44 as.guide/Symbol Names . 27

1.45 as.guide/Dot . 28

1.46 as.guide/Symbol Attributes . 28

1.47 as.guide/Symbol Value . 29

1.48 as.guide/Symbol Type . 29

1.49 as.guide/a.out Symbols . 30

1.50 as.guide/Symbol Desc . 30

1.51 as.guide/Symbol Other . 30

1.52 as.guide/COFF Symbols . 30

1.53 as.guide/Expressions . 31

1.54 as.guide/Empty Exprs . 31

1.55 as.guide/Integer Exprs . 31

1.56 as.guide/Arguments . 32

1.57 as.guide/Operators . 32

1.58 as.guide/Prefix Ops . 33

1.59 as.guide/Infix Ops . 33

1.60 as.guide/Pseudo Ops . 34

1.61 as.guide/Abort . 38

1.62 as.guide/ABORT . 38

1.63 as.guide/Align . 38

1.64 as.guide/App-File . 39

1.65 as.guide/Ascii . 39

1.66 as.guide/Asciz . 39

1.67 as.guide/Byte . 39

1.68 as.guide/Comm . 40

as v

1.69 as.guide/Data . 40

1.70 as.guide/Def . 40

1.71 as.guide/Desc . 40

1.72 as.guide/Dim . 41

1.73 as.guide/Double . 41

1.74 as.guide/Eject . 41

1.75 as.guide/Else . 42

1.76 as.guide/Endef . 42

1.77 as.guide/Endif . 42

1.78 as.guide/Equ . 42

1.79 as.guide/Extern . 43

1.80 as.guide/File . 43

1.81 as.guide/Fill . 43

1.82 as.guide/Float . 44

1.83 as.guide/Global . 44

1.84 as.guide/hword . 44

1.85 as.guide/Ident . 44

1.86 as.guide/If . 45

1.87 as.guide/Include . 45

1.88 as.guide/Int . 45

1.89 as.guide/Lcomm . 46

1.90 as.guide/Lflags . 46

1.91 as.guide/Line . 46

1.92 as.guide/Ln . 47

1.93 as.guide/List . 47

1.94 as.guide/Long . 47

1.95 as.guide/Nolist . 47

1.96 as.guide/Octa . 48

1.97 as.guide/Org . 48

1.98 as.guide/Psize . 48

1.99 as.guide/Quad . 49

1.100as.guide/Sbttl . 49

1.101as.guide/Scl . 49

1.102as.guide/Section . 50

1.103as.guide/Set . 50

1.104as.guide/Short . 50

1.105as.guide/Single . 50

1.106as.guide/Size . 51

1.107as.guide/Space . 51

as vi

1.108as.guide/Stab . 51

1.109as.guide/Tag . 52

1.110as.guide/Text . 53

1.111as.guide/Title . 53

1.112as.guide/Type . 53

1.113as.guide/Val . 54

1.114as.guide/Word . 54

1.115as.guide/Deprecated . 55

1.116as.guide/Machine Dependencies . 55

1.117as.guide/Vax-Dependent . 56

1.118as.guide/Vax-Opts . 56

1.119as.guide/VAX-float . 57

1.120as.guide/VAX-directives . 58

1.121as.guide/VAX-opcodes . 58

1.122as.guide/VAX-branch . 58

1.123as.guide/VAX-operands . 60

1.124as.guide/VAX-no . 61

1.125as.guide/AMD29K-Dependent . 61

1.126as.guide/AMD29K Options . 61

1.127as.guide/AMD29K Syntax . 62

1.128as.guide/AMD29K-Chars . 62

1.129as.guide/AMD29K-Regs . 62

1.130as.guide/AMD29K Floating Point . 63

1.131as.guide/AMD29K Directives . 63

1.132as.guide/AMD29K Opcodes . 64

1.133as.guide/H8-300-Dependent . 64

1.134as.guide/H8-300 Options . 65

1.135as.guide/H8-300 Syntax . 65

1.136as.guide/H8-300-Chars . 65

1.137as.guide/H8-300-Regs . 65

1.138as.guide/H8-300-Addressing . 66

1.139as.guide/H8-300 Floating Point . 67

1.140as.guide/H8-300 Directives . 67

1.141as.guide/H8-300 Opcodes . 67

1.142as.guide/H8-500-Dependent . 70

1.143as.guide/H8-500 Options . 71

1.144as.guide/H8-500 Syntax . 71

1.145as.guide/H8-500-Chars . 71

1.146as.guide/H8-500-Regs . 72

as vii

1.147as.guide/H8-500-Addressing . 72

1.148as.guide/H8-500 Floating Point . 73

1.149as.guide/H8-500 Directives . 73

1.150as.guide/H8-500 Opcodes . 73

1.151as.guide/SH-Dependent . 75

1.152as.guide/SH Options . 76

1.153as.guide/SH Syntax . 76

1.154as.guide/SH-Chars . 76

1.155as.guide/SH-Regs . 77

1.156as.guide/SH-Addressing . 77

1.157as.guide/SH Floating Point . 78

1.158as.guide/SH Directives . 78

1.159as.guide/SH Opcodes . 79

1.160as.guide/i960-Dependent . 80

1.161as.guide/Options-i960 . 81

1.162as.guide/Floating Point-i960 . 82

1.163as.guide/Directives-i960 . 82

1.164as.guide/Opcodes for i960 . 83

1.165as.guide/callj-i960 . 84

1.166as.guide/Compare-and-branch-i960 . 84

1.167as.guide/M68K-Dependent . 85

1.168as.guide/M68K-Opts . 85

1.169as.guide/M68K-Syntax . 86

1.170as.guide/M68K-Moto-Syntax . 87

1.171as.guide/M68K-Float . 88

1.172as.guide/M68K-Directives . 88

1.173as.guide/M68K-opcodes . 89

1.174as.guide/M68K-Branch . 89

1.175as.guide/M68K-Chars . 91

1.176as.guide/Sparc-Dependent . 91

1.177as.guide/Sparc-Opts . 91

1.178as.guide/Sparc-Float . 92

1.179as.guide/Sparc-Directives . 92

1.180as.guide/i386-Dependent . 92

1.181as.guide/i386-Options . 93

1.182as.guide/i386-Syntax . 93

1.183as.guide/i386-Opcodes . 94

1.184as.guide/i386-Regs . 95

1.185as.guide/i386-prefixes . 96

as viii

1.186as.guide/i386-Memory . 96

1.187as.guide/i386-jumps . 97

1.188as.guide/i386-Float . 98

1.189as.guide/i386-Notes . 98

1.190as.guide/Z8000-Dependent . 99

1.191as.guide/Z8000 Options . 100

1.192as.guide/Z8000 Syntax . 100

1.193as.guide/Z8000-Chars . 100

1.194as.guide/Z8000-Regs . 100

1.195as.guide/Z8000-Addressing . 101

1.196as.guide/Z8000 Directives . 101

1.197as.guide/Z8000 Opcodes . 102

1.198as.guide/Acknowledgements . 105

1.199as.guide/Copying . 107

1.200as.guide/Index . 107

as 1 / 143

Chapter 1

as

1.1 as.guide

Using as

This file is a user guide to the GNU assembler as.

Overview
Overview

Invoking
Command-Line Options

Syntax
Syntax

Sections
Sections and Relocation

Symbols
Symbols

Expressions
Expressions

Pseudo Ops
Assembler Directives

Machine Dependencies
Machine Dependent Features

Copying
GNU GENERAL PUBLIC LICENSE

Acknowledgements
Who Did What

as 2 / 143

Index
Index

1.2 as.guide/Overview

Overview

Here is a brief summary of how to invoke as. For details, see

Comand-Line Options
.

as [-a[dhlns]] [-D] [-f]
[-I path] [-K] [-L]
[-o objfile] [-R] [-v] [-w]
[-Av6 | -Av7 | -Av8 | -Asparclite | -bump]
[-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC]
[-b] [-norelax]
[-l] [-m68000 | -m68010 | -m68020 | ...]
[-- | files ...]

-a[dhlns]
Turn on listings; -ad, omit debugging pseudo-ops from listing,
-ah, include high-level source, -al, assembly listing, -an, no
forms processing, -as, symbols. These options may be combined;
e.g., -aln for assembly listing without forms processing. By
itself, -a defaults to -ahls -- that is, all listings turned on.

-D
This option is accepted only for script compatibility with calls to
other assemblers; it has no effect on as.

-f
"fast"--skip whitespace and comment preprocessing (assume source is
compiler output)

-I path
Add path to the search list for .include directives

-K
Issue warnings when difference tables altered for long
displacements.

-L
Keep (in symbol table) local symbols, starting with L

-o objfile
Name the object-file output from as

-R

as 3 / 143

Fold data section into text section

-v
Announce as version

-W
Suppress warning messages

- | files ...
Standard input, or source files to assemble.

The following options are available when as is configured for the
Intel 80960 processor.

-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
Specify which variant of the 960 architecture is the target.

-b
Add code to collect statistics about branches taken.

-norelax
Do not alter compare-and-branch instructions for long
displacements; error if necessary.

The following options are available when as is configured for the
Motorola 68000 series.

-l
Shorten references to undefined symbols, to one word instead of
two.

-m68000 | -m68008 | -m68010 | -m68020 | -m68030 | -m68040
| -m68302 | -m68331 | -m68332 | -m68333 | -m68340 | -mcpu32

Specify what processor in the 68000 family is the target. The
default is normally the 68020, but this can be changed at
configuration time.

-m68881 | -m68882 | -mno-68881 | -mno-68882
The target machine does (or does not) have a floating-point
coprocessor. The default is to assume a coprocessor for 68020,
68030, and cpu32. Although the basic 68000 is not compatible with
the 68881, a combination of the two can be specified, since it’s
possible to do emulation of the coprocessor instructions with the
main processor.

-m68851 | -mno-68851
The target machine does (or does not) have a memory-management
unit coprocessor. The default is to assume an MMU for 68020 and
up.

The following options are available when as is configured for the
SPARC architecture:

-Av6 | -Av7 | -Av8 | -Asparclite
Explicitly select a variant of the SPARC architecture.

-bump

as 4 / 143

Warn when the assembler switches to another architecture.

Manual
Structure of this Manual

GNU Assembler
as, the GNU Assembler

Object Formats
Object File Formats

Command Line
Command Line

Input Files
Input Files

Object
Output (Object) File

Errors
Error and Warning Messages

1.3 as.guide/Manual

Structure of this Manual
========================

This manual is intended to describe what you need to know to use GNU
as. We cover the syntax expected in source files, including notation
for symbols, constants, and expressions; the directives that as
understands; and of course how to invoke as.

This manual also describes some of the machine-dependent features of
various flavors of the assembler.

On the other hand, this manual is not intended as an introduction to
programming in assembly language--let alone programming in general! In
a similar vein, we make no attempt to introduce the machine
architecture; we do not describe the instruction set, standard
mnemonics, registers or addressing modes that are standard to a
particular architecture. You may want to consult the manufacturer’s
machine architecture manual for this information.

1.4 as.guide/GNU Assembler

as 5 / 143

as, the GNU Assembler
=====================

GNU as is really a family of assemblers. If you use (or have used)
the GNU assembler on one architecture, you should find a fairly similar
environment when you use it on another architecture. Each version has
much in common with the others, including object file formats, most
assembler directives (often called pseudo-ops) and assembler syntax.

as is primarily intended to assemble the output of the GNU C
compiler gcc for use by the linker ld. Nevertheless, we’ve tried to
make as assemble correctly everything that other assemblers for the same
machine would assemble. Any exceptions are documented explicitly (see

Machine Dependencies
). This doesn’t mean as always uses the same

syntax as another assembler for the same architecture; for example, we
know of several incompatible versions of 680x0 assembly language syntax.

Unlike older assemblers, as is designed to assemble a source program
in one pass of the source file. This has a subtle impact on the .org
directive (see

.org
).

1.5 as.guide/Object Formats

Object File Formats
===================

The GNU assembler can be configured to produce several alternative
object file formats. For the most part, this does not affect how you
write assembly language programs; but directives for debugging symbols
are typically different in different file formats. See

Symbol Attributes
.

1.6 as.guide/Command Line

Command Line
============

After the program name as, the command line may contain options and
file names. Options may appear in any order, and may be before, after,
or between file names. The order of file names is significant.

as 6 / 143

- (two hyphens) by itself names the standard input file explicitly,
as one of the files for as to assemble.

Except for - any command line argument that begins with a hyphen (-)
is an option. Each option changes the behavior of as. No option
changes the way another option works. An option is a - followed by one
or more letters; the case of the letter is important. All options are
optional.

Some options expect exactly one file name to follow them. The file
name may either immediately follow the option’s letter (compatible with
older assemblers) or it may be the next command argument (GNU
standard). These two command lines are equivalent:

as -o my-object-file.o mumble.s
as -omy-object-file.o mumble.s

1.7 as.guide/Input Files

Input Files
===========

We use the phrase source program, abbreviated source, to describe
the program input to one run of as. The program may be in one or more
files; how the source is partitioned into files doesn’t change the
meaning of the source.

The source program is a concatenation of the text in all the files,
in the order specified.

Each time you run as it assembles exactly one source program. The
source program is made up of one or more files. (The standard input is
also a file.)

You give as a command line that has zero or more input file names.
The input files are read (from left file name to right). A command
line argument (in any position) that has no special meaning is taken to
be an input file name.

If you give as no file names it attempts to read one input file from
the as standard input, which is normally your terminal. You may have
to type ctl-D to tell as there is no more program to assemble.

Use - if you need to explicitly name the standard input file in your
command line.

If the source is empty, as will produce a small, empty object file.

Filenames and Line-numbers

There are two ways of locating a line in the input file (or files)
and either may be used in reporting error messages. One way refers to
a line number in a physical file; the other refers to a line number in a

as 7 / 143

"logical" file. See
Error and Warning Messages
.

Physical files are those files named in the command line given to as.

Logical files are simply names declared explicitly by assembler
directives; they bear no relation to physical files. Logical file names
help error messages reflect the original source file, when as source is
itself synthesized from other files. See

.app-file

.

1.8 as.guide/Object

Output (Object) File
====================

Every time you run as it produces an output file, which is your
assembly language program translated into numbers. This file is the
object file, named b.out, if as is configured for the Intel 80960, or
unless you tell as to give it another name by using the -o option.
Conventionally, object file names end with .o. The default name of
a.out is used for historical reasons: older assemblers were capable of
assembling self-contained programs directly into a runnable program.
(For some formats, this isn’t currently possible, but it can be done for
a.out format.)

The object file is meant for input to the linker ld. It contains
assembled program code, information to help ld integrate the assembled
program into a runnable file, and (optionally) symbolic information for
the debugger.

1.9 as.guide/Errors

Error and Warning Messages
==========================

as may write warnings and error messages to the standard error file
(usually your terminal). This should not happen when a compiler runs
as automatically. Warnings report an assumption made so that as could
keep assembling a flawed program; errors report a grave problem that
stops the assembly.

Warning messages have the format

file_name:NNN:Warning Message Text

(where NNN is a line number). If a logical file name has been given

as 8 / 143

(see
.app-file
) it is used for the filename, otherwise the name of the

current input file is used. If a logical line number was given (see

.line
) then it is used to calculate the number printed, otherwise the

actual line in the current source file is printed. The message text is
intended to be self explanatory (in the grand Unix tradition).

Error messages have the format
file_name:NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages.
The actual message text may be rather less explanatory because many of
them aren’t supposed to happen.

1.10 as.guide/Invoking

Command-Line Options

This chapter describes command-line options available in all
versions of the GNU assembler; see

Machine Dependencies
, for options

specific to particular machine architectures.

If you are invoking as via the GNU C compiler (version 2), you can
use the -Wa option to pass arguments through to the assembler. The
assembler arguments must be separated from each other (and the -Wa) by
commas. For example:

gcc -c -g -O -Wa,-alh,-L file.c

will cause a listing to be emitted to standard output with high-level
and assembly source.

Many compiler command-line options, such as -R and many
machine-specific options, will be automatically be passed to the
assembler by the compiler, so usually you do not need to use this -Wa
mechanism.

a
-a[dhlns] enable listings

D
-D for compatibility

f
-f to work faster

as 9 / 143

I
-I for .include search path

K
-K for difference tables

L
-L to retain local labels

o
-o to name the object file

R
-R to join data and text sections

v
-v to announce version

W
-W to suppress warnings

1.11 as.guide/a

Enable Listings: -a[dhlns]
==========================

These options enable listing output from the assembler. By itself,
-a requests high-level, assembly, and symbols listing. Other letters
may be used to select specific options for the list: -ah requests a
high-level language listing, -al requests an output-program assembly
listing, and -as requests a symbol table listing. High-level listings
require that a compiler debugging option like -g be used, and that
assembly listings (-al) be requested also.

The -ad option may be used to omit debugging pseudo-ops from the
listing.

Once you have specified one of these options, you can further control
listing output and its appearance using the directives .list, .nolist,
.psize, .eject, .title, and .sbttl. The -an option turns off all forms
processing. If you do not request listing output with one of the -a
options, the listing-control directives have no effect.

The letters after -a may be combined into one option, e.g., -aln.

1.12 as.guide/D

as 10 / 143

-D
==

This option has no effect whatsoever, but it is accepted to make it
more likely that scripts written for other assemblers will also work
with as.

1.13 as.guide/f

Work Faster: -f
===============

-f should only be used when assembling programs written by a
(trusted) compiler. -f stops the assembler from doing whitespace and
comment pre-processing on the input file(s) before assembling them.
See

Pre-processing
.

Warning: if the files actually need to be pre-processed (if they
contain comments, for example), as will not work correctly if -f
is used.

1.14 as.guide/I

.include search path: -I path
=============================

Use this option to add a path to the list of directories as will
search for files specified in .include directives (see

.include
). You

may use -I as many times as necessary to include a variety of paths.
The current working directory is always searched first; after that, as
searches any -I directories in the same order as they were specified
(left to right) on the command line.

1.15 as.guide/K

Difference Tables: -K
=====================

as sometimes alters the code emitted for directives of the form
.word sym1-sym2; see

as 11 / 143

.word

. You can use the -K option if you want a
warning issued when this is done.

1.16 as.guide/L

Include Local Labels: -L
========================

Labels beginning with L (upper case only) are called local labels.
See

Symbol Names
. Normally you don’t see such labels when debugging,

because they are intended for the use of programs (like compilers) that
compose assembler programs, not for your notice. Normally both as and
ld discard such labels, so you don’t normally debug with them.

This option tells as to retain those L... symbols in the object
file. Usually if you do this you also tell the linker ld to preserve
symbols whose names begin with L.

1.17 as.guide/o

Name the Object File: -o
========================

There is always one object file output when you run as. By default
it has the name a.out (or b.out, for Intel 960 targets only). You use
this option (which takes exactly one filename) to give the object file
a different name.

Whatever the object file is called, as will overwrite any existing
file of the same name.

1.18 as.guide/R

Join Data and Text Sections: -R
===============================

-R tells as to write the object file as if all data-section data
lives in the text section. This is only done at the very last moment:
your binary data are the same, but data section parts are relocated
differently. The data section part of your object file is zero bytes
long because all its bytes are appended to the text section. (See

as 12 / 143

Sections and Relocation
.)

When you specify -R it would be possible to generate shorter address
displacements (because we don’t have to cross between text and data
section). We refrain from doing this simply for compatibility with
older versions of as. In future, -R may work this way.

When as is configured for COFF output, this option is only useful if
you use sections named .text and .data.

1.19 as.guide/v

Announce Version: -v
====================

You can find out what version of as is running by including the
option -v (which you can also spell as -version) on the command line.

1.20 as.guide/W

Suppress Warnings: -W
=====================

as should never give a warning or error message when assembling
compiler output. But programs written by people often cause as to give
a warning that a particular assumption was made. All such warnings are
directed to the standard error file. If you use this option, no
warnings are issued. This option only affects the warning messages: it
does not change any particular of how as assembles your file. Errors,
which stop the assembly, are still reported.

1.21 as.guide/Syntax

Syntax

This chapter describes the machine-independent syntax allowed in a
source file. as syntax is similar to what many other assemblers use;
it is inspired by the BSD 4.2 assembler, except that as does not
assemble Vax bit-fields.

Pre-processing
Pre-processing

as 13 / 143

Whitespace
Whitespace

Comments
Comments

Symbol Intro
Symbols

Statements
Statements

Constants
Constants

1.22 as.guide/Pre-processing

Pre-Processing
==============

The as internal pre-processor:

* adjusts and removes extra whitespace. It leaves one space or tab
before the keywords on a line, and turns any other whitespace on
the line into a single space.

* removes all comments, replacing them with a single space, or an
appropriate number of newlines.

* converts character constants into the appropriate numeric values.

Note that it does not do macro processing, include file handling, or
anything else you may get from your C compiler’s pre-processor. You can
do include file processing with the .include directive (see

.include
).

Other "CPP" style pre-processing can be done with the GNU C compiler,
by giving the input file a .S suffix; see the compiler documentation
for details.

Excess whitespace, comments, and character constants cannot be used
in the portions of the input text that are not pre-processed.

If the first line of an input file is #NO_APP or the -f option is
given, the input file will not be pre-processed. Within such an input
file, parts of the file can be pre-processed by putting a line that
says #APP before the text that should be pre-processed, and putting a
line that says #NO_APP after them. This feature is mainly intend to
support asm statements in compilers whose output normally does not need
to be pre-processed.

as 14 / 143

1.23 as.guide/Whitespace

Whitespace
==========

Whitespace is one or more blanks or tabs, in any order. Whitespace
is used to separate symbols, and to make programs neater for people to
read. Unless within character constants (see

Character Constants
), any

whitespace means the same as exactly one space.

1.24 as.guide/Comments

Comments
========

There are two ways of rendering comments to as. In both cases the
comment is equivalent to one space.

Anything from /* through the next */ is a comment. This means you
may not nest these comments.

/*
The only way to include a newline (’\n’) in a comment
is to use this sort of comment.

*/

/* This sort of comment does not nest. */

Anything from the line comment character to the next newline is
considered a comment and is ignored. The line comment character is #
on the Vax; # on the i960; ! on the SPARC; | on the 680x0; ; for the
AMD 29K family; ; for the H8/300 family; ! for the H8/500 family; ! for
the Hitachi SH; ! for the Z8000; see

Machine Dependencies
.

On some machines there are two different line comment characters.
One will only begin a comment if it is the first non-whitespace
character on a line, while the other will always begin a comment.

To be compatible with past assemblers, a special interpretation is
given to lines that begin with #. Following the # an absolute
expression (see

Expressions
) is expected: this will be the logical

line number of the next line. Then a string (See
Strings
.) is allowed:

if present it is a new logical file name. The rest of the line, if any, should be
whitespace.

as 15 / 143

If the first non-whitespace characters on the line are not numeric,
the line is ignored. (Just like a comment.)

This is an ordinary comment.
42-6 "new_file_name" # New logical file name

This is logical line # 36.
This feature is deprecated, and may disappear from future versions

of as.

1.25 as.guide/Symbol Intro

Symbols
=======

A symbol is one or more characters chosen from the set of all
letters (both upper and lower case), digits and the three characters
_.$. On most machines, you can also use $ in symbol names;
exceptions are noted in

Machine Dependencies
. No symbol may begin with

a digit. Case is significant. There is no length limit: all
characters are significant. Symbols are delimited by characters not in
that set, or by the beginning of a file (since the source program must
end with a newline, the end of a file is not a possible symbol
delimiter). See

Symbols
.

1.26 as.guide/Statements

Statements
==========

A statement ends at a newline character (\n) or line separator
character. (The line separator is usually ;, unless this conflicts
with the comment character; see

Machine Dependencies
.) The newline or

separator character is considered part of the preceding statement.
Newlines and separators within character constants are an exception:
they don’t end statements.

It is an error to end any statement with end-of-file: the last
character of any input file should be a newline.

You may write a statement on more than one line if you put a
backslash (\) immediately in front of any newlines within the
statement. When as reads a backslashed newline both characters are

as 16 / 143

ignored. You can even put backslashed newlines in the middle of symbol
names without changing the meaning of your source program.

An empty statement is allowed, and may include whitespace. It is
ignored.

A statement begins with zero or more labels, optionally followed by a
key symbol which determines what kind of statement it is. The key
symbol determines the syntax of the rest of the statement. If the
symbol begins with a dot . then the statement is an assembler
directive: typically valid for any computer. If the symbol begins with
a letter the statement is an assembly language instruction: it will
assemble into a machine language instruction. Different versions of as
for different computers will recognize different instructions. In
fact, the same symbol may represent a different instruction in a
different computer’s assembly language.

A label is a symbol immediately followed by a colon (:). Whitespace
before a label or after a colon is permitted, but you may not have
whitespace between a label’s symbol and its colon. See

Labels
.

label: .directive followed by something
another_label: # This is an empty statement.

instruction operand_1, operand_2, ...

1.27 as.guide/Constants

Constants
=========

A constant is a number, written so that its value is known by
inspection, without knowing any context. Like this:

.byte 74, 0112, 092, 0x4A, 0X4a, ’J, ’\J # All the same value.

.ascii "Ring the bell\7" # A string constant.

.octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.

.float 0f-314159265358979323846264338327\
95028841971.693993751E-40 # - pi, a flonum.

Characters
Character Constants

Numbers
Number Constants

as 17 / 143

1.28 as.guide/Characters

Character Constants

There are two kinds of character constants. A character stands for
one character in one byte and its value may be used in numeric
expressions. String constants (properly called string literals) are
potentially many bytes and their values may not be used in arithmetic
expressions.

Strings
Strings

Chars
Characters

1.29 as.guide/Strings

Strings
.......

A string is written between double-quotes. It may contain
double-quotes or null characters. The way to get special characters
into a string is to escape these characters: precede them with a
backslash \ character. For example \ represents one backslash: the
first \ is an escape which tells as to interpret the second character
literally as a backslash (which prevents as from recognizing the second
\ as an escape character). The complete list of escapes follows.

\b
Mnemonic for backspace; for ASCII this is octal code 010.

\f
Mnemonic for FormFeed; for ASCII this is octal code 014.

\n
Mnemonic for newline; for ASCII this is octal code 012.

\r
Mnemonic for carriage-Return; for ASCII this is octal code 015.

\t
Mnemonic for horizontal Tab; for ASCII this is octal code 011.

\ digit digit digit
An octal character code. The numeric code is 3 octal digits. For
compatibility with other Unix systems, 8 and 9 are accepted as
digits: for example, \008 has the value 010, and \009 the value
011.

as 18 / 143

\
Represents one \ character.

\"
Represents one " character. Needed in strings to represent this
character, because an unescaped " would end the string.

\ anything-else
Any other character when escaped by \ will give a warning, but
assemble as if the \ was not present. The idea is that if you
used an escape sequence you clearly didn’t want the literal
interpretation of the following character. However as has no
other interpretation, so as knows it is giving you the wrong code
and warns you of the fact.

Which characters are escapable, and what those escapes represent,
varies widely among assemblers. The current set is what we think the
BSD 4.2 assembler recognizes, and is a subset of what most C compilers
recognize. If you are in doubt, don’t use an escape sequence.

1.30 as.guide/Chars

Characters
..........

A single character may be written as a single quote immediately
followed by that character. The same escapes apply to characters as to
strings. So if you want to write the character backslash, you must
write ’\ where the first \ escapes the second \ . As you can see,
the quote is an acute accent, not a grave accent. A newline
immediately following an acute accent is taken as a literal character
and does not count as the end of a statement. The value of a character
constant in a numeric expression is the machine’s byte-wide code for
that character. as assumes your character code is ASCII: ’A means 65,
’B means 66, and so on.

1.31 as.guide/Numbers

Number Constants

as distinguishes three kinds of numbers according to how they are
stored in the target machine. Integers are numbers that would fit into
an int in the C language. Bignums are integers, but they are stored in
more than 32 bits. Flonums are floating point numbers, described below.

Integers

as 19 / 143

Integers

Bignums
Bignums

Flonums
Flonums

1.32 as.guide/Integers

Integers
........

A binary integer is 0b or 0B followed by zero or more of the binary
digits 01.

An octal integer is 0 followed by zero or more of the octal digits
(01234567).

A decimal integer starts with a non-zero digit followed by zero or
more digits (0123456789).

A hexadecimal integer is 0x or 0X followed by one or more
hexadecimal digits chosen from 0123456789abcdefABCDEF.

Integers have the usual values. To denote a negative integer, use
the prefix operator - discussed under expressions (see

Prefix Operators
).

1.33 as.guide/Bignums

Bignums
.......

A bignum has the same syntax and semantics as an integer except that
the number (or its negative) takes more than 32 bits to represent in
binary. The distinction is made because in some places integers are
permitted while bignums are not.

1.34 as.guide/Flonums

as 20 / 143

Flonums
.......

A flonum represents a floating point number. The translation is
indirect: a decimal floating point number from the text is converted by
as to a generic binary floating point number of more than sufficient
precision. This generic floating point number is converted to a
particular computer’s floating point format (or formats) by a portion
of as specialized to that computer.

A flonum is written by writing (in order)

* The digit 0.

* A letter, to tell as the rest of the number is a flonum. e is
recommended. Case is not important.

On the H8/300, H8/500, Hitachi SH, and AMD 29K architectures, the
letter must be one of the letters DFPRSX (in upper or lower case).

On the Intel 960 architecture, the letter must be one of the
letters DFT (in upper or lower case).

* An optional sign: either + or -.

* An optional integer part: zero or more decimal digits.

* An optional fractional part: . followed by zero or more decimal
digits.

* An optional exponent, consisting of:

* An E or e.

* Optional sign: either + or -.

* One or more decimal digits.

At least one of the integer part or the fractional part must be
present. The floating point number has the usual base-10 value.

as does all processing using integers. Flonums are computed
independently of any floating point hardware in the computer running as.

1.35 as.guide/Sections

Sections and Relocation

Secs Background
Background

as 21 / 143

Ld Sections
ld Sections

As Sections
as Internal Sections

Sub-Sections
Sub-Sections

bss
bss Section

1.36 as.guide/Secs Background

Background
==========

Roughly, a section is a range of addresses, with no gaps; all data
"in" those addresses is treated the same for some particular purpose.
For example there may be a "read only" section.

The linker ld reads many object files (partial programs) and
combines their contents to form a runnable program. When as emits an
object file, the partial program is assumed to start at address 0. ld
will assign the final addresses the partial program occupies, so that
different partial programs don’t overlap. This is actually an
over-simplification, but it will suffice to explain how as uses
sections.

ld moves blocks of bytes of your program to their run-time
addresses. These blocks slide to their run-time addresses as rigid
units; their length does not change and neither does the order of bytes
within them. Such a rigid unit is called a section. Assigning
run-time addresses to sections is called relocation. It includes the
task of adjusting mentions of object-file addresses so they refer to
the proper run-time addresses. For the H8/300 and H8/500, and for the
Hitachi SH, as pads sections if needed to ensure they end on a word
(sixteen bit) boundary.

An object file written by as has at least three sections, any of
which may be empty. These are named text, data and bss sections.

When it generates COFF output, as can also generate whatever other
named sections you specify using the .section directive (see

.section
).

If you don’t use any directives that place output in the .text or .data
sections, these sections will still exist, but will be empty.

Within the object file, the text section starts at address 0, the
data section follows, and the bss section follows the data section.

To let ld know which data will change when the sections are

as 22 / 143

relocated, and how to change that data, as also writes to the object
file details of the relocation needed. To perform relocation ld must
know, each time an address in the object file is mentioned:

* Where in the object file is the beginning of this reference to an
address?

* How long (in bytes) is this reference?

* Which section does the address refer to? What is the numeric
value of

(address) - (start-address of section)?

* Is the reference to an address "Program-Counter relative"?

In fact, every address as ever uses is expressed as
(section) + (offset into section)

Further, every expression as computes is of this section-relative
nature. Absolute expression means an expression with section
"absolute" (see

Ld Sections
). A pass1 expression means an expression

with section "pass1" (see
as Internal Sections
). In this manual we use

the notation {secname N } to mean "offset N into section secname".

Apart from text, data and bss sections you need to know about the
absolute section. When ld mixes partial programs, addresses in the
absolute section remain unchanged. For example, address {absolute 0}
is "relocated" to run-time address 0 by ld. Although two partial
programs’ data sections will not overlap addresses after linking, by
definition their absolute sections will overlap. Address {absolute
239} in one partial program will always be the same address when
the program is running as address {absolute 239} in any other partial
program.

The idea of sections is extended to the undefined section. Any
address whose section is unknown at assembly time is by definition
rendered {undefined U }--where U will be filled in later. Since
numbers are always defined, the only way to generate an undefined
address is to mention an undefined symbol. A reference to a named
common block would be such a symbol: its value is unknown at assembly
time so it has section undefined.

By analogy the word section is used to describe groups of sections in
the linked program. ld puts all partial programs’ text sections in
contiguous addresses in the linked program. It is customary to refer
to the text section of a program, meaning all the addresses of all
partial program’s text sections. Likewise for data and bss sections.

Some sections are manipulated by ld; others are invented for use of
as and have no meaning except during assembly.

as 23 / 143

1.37 as.guide/Ld Sections

ld Sections
===========

ld deals with just four kinds of sections, summarized below.

named sections
text section
data section

These sections hold your program. as and ld treat them as
separate but equal sections. Anything you can say of one section
is true another. When the program is running, however, it is
customary for the text section to be unalterable. The text
section is often shared among processes: it will contain
instructions, constants and the like. The data section of a
running program is usually alterable: for example, C variables
would be stored in the data section.

bss section
This section contains zeroed bytes when your program begins
running. It is used to hold unitialized variables or common
storage. The length of each partial program’s bss section is
important, but because it starts out containing zeroed bytes there
is no need to store explicit zero bytes in the object file. The
bss section was invented to eliminate those explicit zeros from
object files.

absolute section
Address 0 of this section is always "relocated" to runtime address
0. This is useful if you want to refer to an address that ld must
not change when relocating. In this sense we speak of absolute
addresses being "unrelocatable": they don’t change during
relocation.

undefined section
This "section" is a catch-all for address references to objects
not in the preceding sections.

An idealized example of three relocatable sections follows. The
example uses the traditional section names .text and .data. Memory
addresses are on the horizontal axis.

+-----+----+--+
partial program # 1: |ttttt|dddd|00|

+-----+----+--+

text data bss
seg. seg. seg.

+---+---+---+
partial program # 2: |TTT|DDD|000|

+---+---+---+

+--+---+-----+--+----+---+-----+~~
linked program: | |TTT|ttttt| |dddd|DDD|00000|

as 24 / 143

+--+---+-----+--+----+---+-----+~~

addresses: 0 ...

1.38 as.guide/As Sections

as Internal Sections
====================

These sections are meant only for the internal use of as. They have
no meaning at run-time. You don’t really need to know about these
sections for most purposes; but they can be mentioned in as warning
messages, so it might be helpful to have an idea of their meanings to
as. These sections are used to permit the value of every
expression in your assembly language program to be a section-relative
address.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
An internal assembler logic error has been found. This means
there is a bug in the assembler.

expr section
The assembler stores complex expression internally as combinations
of symbols. When it needs to represent an expression as a symbol,
it puts it in the expr section.

1.39 as.guide/Sub-Sections

Sub-Sections
============

Assembled bytes conventionally fall into two sections: text and data.
You may have separate groups of data in named sections that you want to
end up near to each other in the object file, even though they are not
contiguous in the assembler source. as allows you to use subsections
for this purpose. Within each section, there can be numbered
subsections with values from 0 to 8192. Objects assembled into the
same subsection will be grouped with other objects in the same
subsection when they are all put into the object file. For example, a
compiler might want to store constants in the text section, but might
not want to have them interspersed with the program being assembled.
In this case, the compiler could issue a .text 0 before each section of
code being output, and a .text 1 before each group of constants being
output.

Subsections are optional. If you don’t use subsections, everything
will be stored in subsection number zero.

Each subsection is zero-padded up to a multiple of four bytes.
(Subsections may be padded a different amount on different flavors of

as 25 / 143

as.)

Subsections appear in your object file in numeric order, lowest
numbered to highest. (All this to be compatible with other people’s
assemblers.) The object file contains no representation of subsections;
ld and other programs that manipulate object files will see no trace of
them. They just see all your text subsections as a text section, and
all your data subsections as a data section.

To specify which subsection you want subsequent statements assembled
into, use a numeric argument to specify it, in a .text expression or a
.data expression statement. When generating COFF output, you can also
use an extra subsection argument with arbitrary named sections:
.section name, expression. Expression should be an absolute expression.
(See

Expressions
.) If you just say .text then .text 0 is assumed.

Likewise .data means .data 0. Assembly begins in text 0. For instance:
.text 0 # The default subsection is text 0 anyway.
.ascii "This lives in the first text subsection. *"
.text 1
.ascii "But this lives in the second text subsection."
.data 0
.ascii "This lives in the data section,"
.ascii "in the first data subsection."
.text 0
.ascii "This lives in the first text section,"
.ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every
byte assembled into that section. Because subsections are merely a
convenience restricted to as there is no concept of a subsection
location counter. There is no way to directly manipulate a location
counter--but the .align directive will change it, and any label
definition will capture its current value. The location counter of the
section that statements are being assembled into is said to be the
active location counter.

1.40 as.guide/bss

bss Section
===========

The bss section is used for local common variable storage. You may
allocate address space in the bss section, but you may not dictate data
to load into it before your program executes. When your program starts
running, all the contents of the bss section are zeroed bytes.

Addresses in the bss section are allocated with special directives;
you may not assemble anything directly into the bss section. Hence
there are no bss subsections. See

.comm
, see

as 26 / 143

.lcomm

.

1.41 as.guide/Symbols

Symbols

Symbols are a central concept: the programmer uses symbols to name
things, the linker uses symbols to link, and the debugger uses symbols
to debug.

Warning: as does not place symbols in the object file in the same
order they were declared. This may break some debuggers.

Labels
Labels

Setting Symbols
Giving Symbols Other Values

Symbol Names
Symbol Names

Dot
The Special Dot Symbol

Symbol Attributes
Symbol Attributes

1.42 as.guide/Labels

Labels
======

A label is written as a symbol immediately followed by a colon :.
The symbol then represents the current value of the active location
counter, and is, for example, a suitable instruction operand. You are
warned if you use the same symbol to represent two different locations:
the first definition overrides any other definitions.

1.43 as.guide/Setting Symbols

as 27 / 143

Giving Symbols Other Values
===========================

A symbol can be given an arbitrary value by writing a symbol,
followed by an equals sign =, followed by an expression (see

Expressions
). This is equivalent to using the .set directive. See

.set

.

1.44 as.guide/Symbol Names

Symbol Names
============

Symbol names begin with a letter or with one of ._. On most
machines, you can also use $ in symbol names; exceptions are noted in

Machine Dependencies
. That character may be followed by any string of

digits, letters, dollar signs (unless otherwise noted in

Machine Dependencies
), and underscores. For the AMD 29K family, ? is

also allowed in the body of a symbol name, though not at its beginning.

Case of letters is significant: foo is a different symbol name than
Foo.

Each symbol has exactly one name. Each name in an assembly language
program refers to exactly one symbol. You may use that symbol name any
number of times in a program.

Local Symbol Names

Local symbols help compilers and programmers use names temporarily.
There are ten local symbol names, which are re-used throughout the
program. You may refer to them using the names 0 1 ... 9. To define a
local symbol, write a label of the form N: (where N represents any
digit). To refer to the most recent previous definition of that symbol
write Nb, using the same digit as when you defined the label. To refer
to the next definition of a local label, write Nf--where N gives you a
choice of 10 forward references. The b stands for "backwards" and the
f stands for "forwards".

Local symbols are not emitted by the current GNU C compiler.

There is no restriction on how you can use these labels, but
remember that at any point in the assembly you can refer to at most 10

as 28 / 143

prior local labels and to at most 10 forward local labels.

Local symbol names are only a notation device. They are immediately
transformed into more conventional symbol names before the assembler
uses them. The symbol names stored in the symbol table, appearing in
error messages and optionally emitted to the object file have these
parts:

L
All local labels begin with L. Normally both as and ld forget
symbols that start with L. These labels are used for symbols you
are never intended to see. If you give the -L option then as will
retain these symbols in the object file. If you also instruct ld
to retain these symbols, you may use them in debugging.

digit
If the label is written 0: then the digit is 0. If the label is
written 1: then the digit is 1. And so on up through 9:.

This unusual character is included so you don’t accidentally invent
a symbol of the same name. The character has ASCII value \001.

ordinal number
This is a serial number to keep the labels distinct. The first 0:
gets the number 1; The 15th 0: gets the number 15; etc.. Likewise
for the other labels 1: through 9:.

For instance, the first 1: is named L!A1, the 44th 3: is named L!A44.

1.45 as.guide/Dot

The Special Dot Symbol
======================

The special symbol . refers to the current address that as is
assembling into. Thus, the expression melvin: .long . will cause
melvin to contain its own address. Assigning a value to . is
treated the same as a .org directive. Thus, the expression .=.+4 is
the same as saying .space 4.

1.46 as.guide/Symbol Attributes

Symbol Attributes
=================

Every symbol has, as well as its name, the attributes "Value" and
"Type". Depending on output format, symbols can also have auxiliary
attributes.

as 29 / 143

If you use a symbol without defining it, as assumes zero for all
these attributes, and probably won’t warn you. This makes the symbol
an externally defined symbol, which is generally what you would want.

Symbol Value
Value

Symbol Type
Type

a.out Symbols
Symbol Attributes: a.out

COFF Symbols
Symbol Attributes for COFF

1.47 as.guide/Symbol Value

Value

The value of a symbol is (usually) 32 bits. For a symbol which
labels a location in the text, data, bss or absolute sections the value
is the number of addresses from the start of that section to the label.
Naturally for text, data and bss sections the value of a symbol changes
as ld changes section base addresses during linking. Absolute symbols’
values do not change during linking: that is why they are called
absolute.

The value of an undefined symbol is treated in a special way. If it
is 0 then the symbol is not defined in this assembler source program,
and ld will try to determine its value from other programs it is linked
with. You make this kind of symbol simply by mentioning a symbol name
without defining it. A non-zero value represents a .comm common
declaration. The value is how much common storage to reserve, in bytes
(addresses). The symbol refers to the first address of the allocated
storage.

1.48 as.guide/Symbol Type

Type

as 30 / 143

The type attribute of a symbol contains relocation (section)
information, any flag settings indicating that a symbol is external, and
(optionally), other information for linkers and debuggers. The exact
format depends on the object-code output format in use.

1.49 as.guide/a.out Symbols

Symbol Attributes: a.out

Symbol Desc
Descriptor

Symbol Other
Other

1.50 as.guide/Symbol Desc

Descriptor
..........

This is an arbitrary 16-bit value. You may establish a symbol’s
descriptor value by using a .desc statement (see

.desc
). A descriptor

value means nothing to as.

1.51 as.guide/Symbol Other

Other
.....

This is an arbitrary 8-bit value. It means nothing to as.

1.52 as.guide/COFF Symbols

Symbol Attributes for COFF

as 31 / 143

The COFF format supports a multitude of auxiliary symbol attributes;
like the primary symbol attributes, they are set between .def and
.endef directives.

Primary Attributes
..................

The symbol name is set with .def; the value and type, respectively,
with .val and .type.

Auxiliary Attributes
....................

The as directives .dim, .line, .scl, .size, and .tag can generate
auxiliary symbol table information for COFF.

1.53 as.guide/Expressions

Expressions

An expression specifies an address or numeric value. Whitespace may
precede and/or follow an expression.

Empty Exprs
Empty Expressions

Integer Exprs
Integer Expressions

1.54 as.guide/Empty Exprs

Empty Expressions
=================

An empty expression has no value: it is just whitespace or null.
Wherever an absolute expression is required, you may omit the
expression and as will assume a value of (absolute) 0. This is
compatible with other assemblers.

1.55 as.guide/Integer Exprs

as 32 / 143

Integer Expressions
===================

An integer expression is one or more arguments delimited by
operators.

Arguments
Arguments

Operators
Operators

Prefix Ops
Prefix Operators

Infix Ops
Infix Operators

1.56 as.guide/Arguments

Arguments

Arguments are symbols, numbers or subexpressions. In other contexts
arguments are sometimes called "arithmetic operands". In this manual,
to avoid confusing them with the "instruction operands" of the machine
language, we use the term "argument" to refer to parts of expressions
only, reserving the word "operand" to refer only to machine instruction
operands.

Symbols are evaluated to yield {section NNN } where section is one
of text, data, bss, absolute, or undefined. NNN is a signed, 2’s
complement 32 bit integer.

Numbers are usually integers.

A number can be a flonum or bignum. In this case, you are warned
that only the low order 32 bits are used, and as pretends these 32 bits
are an integer. You may write integer-manipulating instructions that
act on exotic constants, compatible with other assemblers.

Subexpressions are a left parenthesis (followed by an integer
expression, followed by a right parenthesis); or a prefix operator
followed by an argument.

1.57 as.guide/Operators

as 33 / 143

Operators

Operators are arithmetic functions, like + or %. Prefix operators
are followed by an argument. Infix operators appear between their
arguments. Operators may be preceded and/or followed by whitespace.

1.58 as.guide/Prefix Ops

Prefix Operator

as has the following prefix operators. They each take one argument,
which must be absolute.

-
Negation. Two’s complement negation.

~
Complementation. Bitwise not.

1.59 as.guide/Infix Ops

Infix Operators

Infix operators take two arguments, one on either side. Operators
have precedence, but operations with equal precedence are performed left
to right. Apart from + or -, both arguments must be absolute, and the
result is absolute.

1. Highest Precedence

*
Multiplication.

/
Division. Truncation is the same as the C operator /

%
Remainder.

<
<<

Shift Left. Same as the C operator <<.

>
>>

Shift Right. Same as the C operator >>.

as 34 / 143

2. Intermediate precedence

|
Bitwise Inclusive Or.

&
Bitwise And.

^
Bitwise Exclusive Or.

!
Bitwise Or Not.

3. Lowest Precedence

+
Addition. If either argument is absolute, the result has the
section of the other argument. If either argument is pass1
or undefined, the result is pass1. Otherwise + is illegal.

-
Subtraction. If the right argument is absolute, the result
has the section of the left argument. If either argument is
pass1 the result is pass1. If either argument is undefined
the result is difference section. If both arguments are in
the same section, the result is absolute--provided that
section is one of text, data or bss. Otherwise subtraction
is illegal.

The sense of the rule for addition is that it’s only meaningful to
add the offsets in an address; you can only have a defined section in
one of the two arguments.

Similarly, you can’t subtract quantities from two different sections.

1.60 as.guide/Pseudo Ops

Assembler Directives

All assembler directives have names that begin with a period (.).
The rest of the name is letters, usually in lower case.

This chapter discusses directives that are available regardless of
the target machine configuration for the GNU assembler. Some machine
configurations provide additional directives. See

Machine Dependencies
.

Abort

as 35 / 143

.abort

ABORT
.ABORT

Align
.align abs-expr , abs-expr

App-File
.app-file string

Ascii
.ascii "string" ...

Asciz
.asciz "string" ...

Byte
.byte expressions

Comm
.comm symbol , length

Data
.data subsection

Def
.def name

Desc
.desc symbol, abs-expression

Dim
.dim

Double
.double flonums

Eject
.eject

Else
.else

Endef
.endef

Endif
.endif

as 36 / 143

Equ
.equ symbol, expression

Extern
.extern

File
.file string

Fill
.fill repeat , size , value

Float
.float flonums

Global
.global symbol, .globl symbol

hword
.hword expressions

Ident
.ident

If
.if absolute expression

Include
.include "file"

Int
.int expressions

Lcomm
.lcomm symbol , length

Lflags
.lflags

Line
.line line-number

Ln
.ln line-number

List
.list

Long
.long expressions

as 37 / 143

Nolist
.nolist

Octa
.octa bignums

Org
.org new-lc , fill

Psize
.psize lines, columns

Quad
.quad bignums

Sbttl
.sbttl "subheading"

Scl
.scl class

Section
.section name, subsection

Set
.set symbol, expression

Short
.short expressions

Single
.single flonums

Size
.size

Space
.space size , fill

Stab
.stabd, .stabn, .stabs

Tag
.tag structname

Text
.text subsection

Title

as 38 / 143

.title "heading"

Type
.type int

Val
.val addr

Word
.word expressions

Deprecated
Deprecated Directives

1.61 as.guide/Abort

.abort
======

This directive stops the assembly immediately. It is for
compatibility with other assemblers. The original idea was that the
assembly language source would be piped into the assembler. If the
sender of the source quit, it could use this directive tells as to quit
also. One day .abort will not be supported.

1.62 as.guide/ABORT

.ABORT
======

When producing COFF output, as accepts this directive as a synonym
for .abort.

When producing b.out output, as accepts this directive, but ignores
it.

1.63 as.guide/Align

.align abs-expr , abs-expr
==========================

Pad the location counter (in the current subsection) to a particular
storage boundary. The first expression (which must be absolute) is the
number of low-order zero bits the location counter will have after

as 39 / 143

advancement. For example .align 3 will advance the location counter
until it a multiple of 8. If the location counter is already a
multiple of 8, no change is needed.

The second expression (also absolute) gives the value to be stored in
the padding bytes. It (and the comma) may be omitted. If it is
omitted, the padding bytes are zero.

1.64 as.guide/App-File

.app-file string
================

.app-file (which may also be spelled .file) tells as that we are
about to start a new logical file. string is the new file name. In
general, the filename is recognized whether or not it is surrounded by
quotes "; but if you wish to specify an empty file name is permitted,
you must give the quotes-"". This statement may go away in future: it
is only recognized to be compatible with old as programs.

1.65 as.guide/Ascii

.ascii "string" ...
===================

.ascii expects zero or more string literals (see
Strings
) separated

by commas. It assembles each string (with no automatic trailing zero
byte) into consecutive addresses.

1.66 as.guide/Asciz

.asciz "string" ...
===================

.asciz is just like .ascii, but each string is followed by a zero
byte. The "z" in .asciz stands for "zero".

1.67 as.guide/Byte

as 40 / 143

.byte expressions
=================

.byte expects zero or more expressions, separated by commas. Each
expression is assembled into the next byte.

1.68 as.guide/Comm

.comm symbol , length
======================

.comm declares a named common area in the bss section. Normally ld
reserves memory addresses for it during linking, so no partial program
defines the location of the symbol. Use .comm to tell ld that it must
be at least length bytes long. ld will allocate space for each .comm
symbol that is at least as long as the longest .comm request in any of
the partial programs linked. length is an absolute expression.

1.69 as.guide/Data

.data subsection
================

.data tells as to assemble the following statements onto the end of
the data subsection numbered subsection (which is an absolute
expression). If subsection is omitted, it defaults to zero.

1.70 as.guide/Def

.def name
=========

Begin defining debugging information for a symbol name; the
definition extends until the .endef directive is encountered.

This directive is only observed when as is configured for COFF
format output; when producing b.out, .def is recognized, but ignored.

1.71 as.guide/Desc

as 41 / 143

.desc symbol, abs-expression
============================

This directive sets the descriptor of the symbol (see

Symbol Attributes
) to the low 16 bits of an absolute expression.

The .desc directive is not available when as is configured for COFF
output; it is only for a.out or b.out object format. For the sake of
compatibility, as will accept it, but produce no output, when
configured for COFF.

1.72 as.guide/Dim

.dim
====

This directive is generated by compilers to include auxiliary
debugging information in the symbol table. It is only permitted inside
.def/.endef pairs.

.dim is only meaningful when generating COFF format output; when as
is generating b.out, it accepts this directive but ignores it.

1.73 as.guide/Double

.double flonums
===============

.double expects zero or more flonums, separated by commas. It
assembles floating point numbers. The exact kind of floating point
numbers emitted depends on how as is configured. See

Machine Dependencies
.

1.74 as.guide/Eject

.eject
======

Force a page break at this point, when generating assembly listings.

as 42 / 143

1.75 as.guide/Else

.else
=====

.else is part of the as support for conditional assembly; see
.if
.

It marks the beginning of a section of code to be assembled if the
condition for the preceding .if was false.

1.76 as.guide/Endef

.endef
======

This directive flags the end of a symbol definition begun with .def.

.endef is only meaningful when generating COFF format output; if as
is configured to generate b.out, it accepts this directive but ignores
it.

1.77 as.guide/Endif

.endif
======

.endif is part of the as support for conditional assembly; it marks
the end of a block of code that is only assembled conditionally. See

.if

.

1.78 as.guide/Equ

.equ symbol, expression
=======================

This directive sets the value of symbol to expression. It is
synonymous with .set; see

.set

.

as 43 / 143

1.79 as.guide/Extern

.extern
=======

.extern is accepted in the source program--for compatibility with
other assemblers--but it is ignored. as treats all undefined symbols
as external.

1.80 as.guide/File

.file string
============

.file (which may also be spelled .app-file) tells as that we are
about to start a new logical file. string is the new file name. In
general, the filename is recognized whether or not it is surrounded by
quotes "; but if you wish to specify an empty file name, you must give
the quotes-"". This statement may go away in future: it is only
recognized to be compatible with old as programs. In some
configurations of as, .file has already been removed to avoid conflicts
with other assemblers. See

Machine Dependencies
.

1.81 as.guide/Fill

.fill repeat , size , value
===========================

result, size and value are absolute expressions. This emits repeat
copies of size bytes. Repeat may be zero or more. Size may be zero or
more, but if it is more than 8, then it is deemed to have the value 8,
compatible with other people’s assemblers. The contents of each repeat
bytes is taken from an 8-byte number. The highest order 4 bytes are
zero. The lowest order 4 bytes are value rendered in the byte-order of
an integer on the computer as is assembling for. Each size bytes in a
repetition is taken from the lowest order size bytes of this number.
Again, this bizarre behavior is compatible with other people’s
assemblers.

size and value are optional. If the second comma and value are
absent, value is assumed zero. If the first comma and following tokens
are absent, size is assumed to be 1.

as 44 / 143

1.82 as.guide/Float

.float flonums
==============

This directive assembles zero or more flonums, separated by commas.
It has the same effect as .single. The exact kind of floating point
numbers emitted depends on how as is configured. See

Machine Dependencies
.

1.83 as.guide/Global

.global symbol, .globl symbol
=============================

.global makes the symbol visible to ld. If you define symbol in
your partial program, its value is made available to other partial
programs that are linked with it. Otherwise, symbol will take its
attributes from a symbol of the same name from another partial program
it is linked with.

Both spellings (.globl and .global) are accepted, for compatibility
with other assemblers.

1.84 as.guide/hword

.hword expressions
==================

This expects zero or more expressions, and emits a 16 bit number for
each.

This directive is a synonym for .short; depending on the target
architecture, it may also be a synonym for .word.

1.85 as.guide/Ident

.ident
======

This directive is used by some assemblers to place tags in object
files. as simply accepts the directive for source-file compatibility
with such assemblers, but does not actually emit anything for it.

as 45 / 143

1.86 as.guide/If

.if absolute expression
=======================

.if marks the beginning of a section of code which is only
considered part of the source program being assembled if the argument
(which must be an absolute expression) is non-zero. The end of the
conditional section of code must be marked by .endif (see

.endif
);

optionally, you may include code for the alternative condition, flagged
by .else (see

.else

.

The following variants of .if are also supported:
.ifdef symbol

Assembles the following section of code if the specified symbol
has been defined.

.ifndef symbol
ifnotdef symbol

Assembles the following section of code if the specified symbol
has not been defined. Both spelling variants are equivalent.

1.87 as.guide/Include

.include "file"
===============

This directive provides a way to include supporting files at
specified points in your source program. The code from file is
assembled as if it followed the point of the .include; when the end of
the included file is reached, assembly of the original file continues.
You can control the search paths used with the -I command-line option
(see

Command-Line Options
). Quotation marks are required around file.

1.88 as.guide/Int

.int expressions
================

Expect zero or more expressions, of any section, separated by
commas. For each expression, emit a 32-bit number that will, at run
time, be the value of that expression. The byte order of the

as 46 / 143

expression depends on what kind of computer will run the program.

1.89 as.guide/Lcomm

.lcomm symbol , length
======================

Reserve length (an absolute expression) bytes for a local common
denoted by symbol. The section and value of symbol are those of the
new local common. The addresses are allocated in the bss section, so
at run-time the bytes will start off zeroed. Symbol is not declared
global (see

.global
), so is normally not visible to ld.

1.90 as.guide/Lflags

.lflags
=======

as accepts this directive, for compatibility with other assemblers,
but ignores it.

1.91 as.guide/Line

.line line-number
=================

Tell as to change the logical line number. line-number must be an
absolute expression. The next line will have that logical line number.
So any other statements on the current line (after a statement
separator character) will be reported as on logical line number
line-number - 1. One day this directive will be unsupported: it is
used only for compatibility with existing assembler programs.

Warning: In the AMD29K configuration of as, this command is only
available with the name .ln, rather than as either .line or .ln.

Even though this is a directive associated with the a.out or b.out
object-code formats, as will still recognize it when producing COFF
output, and will treat .line as though it were the COFF .ln if it is
found outside a .def/.endef pair.

Inside a .def, .line is, instead, one of the directives used by
compilers to generate auxiliary symbol information for debugging.

as 47 / 143

1.92 as.guide/Ln

.ln line-number
===============

.ln is a synonym for .line.

1.93 as.guide/List

.list
=====

Control (in conjunction with the .nolist directive) whether or not
assembly listings are generated. These two directives maintain an
internal counter (which is zero initially). .list increments the
counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

By default, listings are disabled. When you enable them (with the
-a command line option; see

Command-Line Options
), the initial

value of the listing counter is one.

1.94 as.guide/Long

.long expressions
=================

.long is the same as .int, see
.int
.

1.95 as.guide/Nolist

.nolist
=======

Control (in conjunction with the .list directive) whether or not
assembly listings are generated. These two directives maintain an
internal counter (which is zero initially). .list increments the
counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

as 48 / 143

1.96 as.guide/Octa

.octa bignums
=============

This directive expects zero or more bignums, separated by commas.
For each bignum, it emits a 16-byte integer.

The term "octa" comes from contexts in which a "word" is two bytes;
hence octa-word for 16 bytes.

1.97 as.guide/Org

.org new-lc , fill
==================

.org will advance the location counter of the current section to
new-lc. new-lc is either an absolute expression or an expression with
the same section as the current subsection. That is, you can’t use
.org to cross sections: if new-lc has the wrong section, the .org
directive is ignored. To be compatible with former assemblers, if the
section of new-lc is absolute, as will issue a warning, then pretend
the section of new-lc is the same as the current subsection.

.org may only increase the location counter, or leave it unchanged;
you cannot use .org to move the location counter backwards.

Because as tries to assemble programs in one pass new-lc may not be
undefined. If you really detest this restriction we eagerly await a
chance to share your improved assembler.

Beware that the origin is relative to the start of the section, not
to the start of the subsection. This is compatible with other people’s
assemblers.

When the location counter (of the current subsection) is advanced,
the intervening bytes are filled with fill which should be an absolute
expression. If the comma and fill are omitted, fill defaults to zero.

1.98 as.guide/Psize

.psize lines , columns
======================

Use this directive to declare the number of lines--and, optionally,
the number of columns--to use for each page, when generating listings.

If you don’t use .psize, listings will use a default line-count of
60. You may omit the comma and columns specification; the default
width is 200 columns.

as 49 / 143

as will generate formfeeds whenever the specified number of lines is
exceeded (or whenever you explicitly request one, using .eject).

If you specify lines as 0, no formfeeds are generated save those
explicitly specified with .eject.

1.99 as.guide/Quad

.quad bignums
=============

.quad expects zero or more bignums, separated by commas. For each
bignum, it emits an 8-byte integer. If the bignum won’t fit in 8
bytes, it prints a warning message; and just takes the lowest order 8
bytes of the bignum.

The term "quad" comes from contexts in which a "word" is two bytes;
hence quad-word for 8 bytes.

1.100 as.guide/Sbttl

.sbttl "subheading"
===================

Use subheading as the title (third line, immediately after the title
line) when generating assembly listings.

This directive affects subsequent pages, as well as the current page
if it appears within ten lines of the top of a page.

1.101 as.guide/Scl

.scl class
==========

Set the storage-class value for a symbol. This directive may only be
used inside a .def/.endef pair. Storage class may flag whether a
symbol is static or external, or it may record further symbolic
debugging information.

The .scl directive is primarily associated with COFF output; when
configured to generate b.out output format, as will accept this
directive but ignore it.

as 50 / 143

1.102 as.guide/Section

.section name, subsection
=========================

Assemble the following code into end of subsection numbered
subsection in the COFF named section name. If you omit subsection, as
uses subsection number zero. .section .text is equivalent to the .text
directive; .section .data is equivalent to the .data directive.

1.103 as.guide/Set

.set symbol, expression
=======================

This directive sets the value of symbol to expression. This will
change symbol’s value and type to conform to expression. If symbol was
flagged as external, it remains flagged. (See

Symbol Attributes
.)

You may .set a symbol many times in the same assembly. If the
expression’s section is unknowable during pass 1, a second pass over
the source program will be forced. The second pass is currently not
implemented. as will abort with an error message if one is required.

If you .set a global symbol, the value stored in the object file is
the last value stored into it.

1.104 as.guide/Short

.short expressions
==================

.short is normally the same as .word. See
.word
.

In some configurations, however, .short and .word generate numbers
of different lengths; see

Machine Dependencies
.

1.105 as.guide/Single

as 51 / 143

.single flonums
===============

This directive assembles zero or more flonums, separated by commas.
It has the same effect as .float. The exact kind of floating point
numbers emitted depends on how as is configured. See

Machine Dependencies
.

1.106 as.guide/Size

.size
=====

This directive is generated by compilers to include auxiliary
debugging information in the symbol table. It is only permitted inside
.def/.endef pairs.

.size is only meaningful when generating COFF format output; when as
is generating b.out, it accepts this directive but ignores it.

1.107 as.guide/Space

.space size , fill
==================

This directive emits size bytes, each of value fill. Both size and
fill are absolute expressions. If the comma and fill are omitted, fill
is assumed to be zero.

On the AMD 29K, this directive is ignored; it is accepted for
compatibility with other AMD 29K assemblers.

Warning: In most versions of the GNU assembler, the directive
.space has the effect of .block See

Machine Dependencies
.

1.108 as.guide/Stab

.stabd, .stabn, .stabs
======================

as 52 / 143

There are three directives that begin .stab. All emit symbols (see

Symbols
), for use by symbolic debuggers. The symbols are not entered

in the as hash table: they cannot be referenced elsewhere in the source
file. Up to five fields are required:

string
This is the symbol’s name. It may contain any character except
\000, so is more general than ordinary symbol names. Some
debuggers used to code arbitrarily complex structures into symbol
names using this field.

type
An absolute expression. The symbol’s type is set to the low 8
bits of this expression. Any bit pattern is permitted, but ld and
debuggers will choke on silly bit patterns.

other
An absolute expression. The symbol’s "other" attribute is set to
the low 8 bits of this expression.

desc
An absolute expression. The symbol’s descriptor is set to the low
16 bits of this expression.

value
An absolute expression which becomes the symbol’s value.

If a warning is detected while reading a .stabd, .stabn, or .stabs
statement, the symbol has probably already been created and you will
get a half-formed symbol in your object file. This is compatible with
earlier assemblers!

.stabd type , other , desc
The "name" of the symbol generated is not even an empty string.
It is a null pointer, for compatibility. Older assemblers used a
null pointer so they didn’t waste space in object files with empty
strings.

The symbol’s value is set to the location counter, relocatably.
When your program is linked, the value of this symbol will be
where the location counter was when the .stabd was assembled.

.stabn type , other , desc , value
The name of the symbol is set to the empty string "".

.stabs string , type , other , desc , value
All five fields are specified.

1.109 as.guide/Tag

as 53 / 143

.tag structname
===============

This directive is generated by compilers to include auxiliary
debugging information in the symbol table. It is only permitted inside
.def/.endef pairs. Tags are used to link structure definitions in the
symbol table with instances of those structures.

.tag is only used when generating COFF format output; when as is
generating b.out, it accepts this directive but ignores it.

1.110 as.guide/Text

.text subsection
================

Tells as to assemble the following statements onto the end of the
text subsection numbered subsection, which is an absolute expression.
If subsection is omitted, subsection number zero is used.

1.111 as.guide/Title

.title "heading"
================

Use heading as the title (second line, immediately after the source
file name and pagenumber) when generating assembly listings.

This directive affects subsequent pages, as well as the current page
if it appears within ten lines of the top of a page.

1.112 as.guide/Type

.type int
=========

This directive, permitted only within .def/.endef pairs, records the
integer int as the type attribute of a symbol table entry.

.type is associated only with COFF format output; when as is
configured for b.out output, it accepts this directive but ignores it.

as 54 / 143

1.113 as.guide/Val

.val addr
=========

This directive, permitted only within .def/.endef pairs, records the
address addr as the value attribute of a symbol table entry.

.val is used only for COFF output; when as is configured for b.out,
it accepts this directive but ignores it.

1.114 as.guide/Word

.word expressions
=================

This directive expects zero or more expressions, of any section,
separated by commas.

The size of the number emitted, and its byte order, depends on what
kind of computer will run the program.

Warning: Special Treatment to support Compilers

Machines with a 32-bit address space, but that do less than 32-bit
addressing, require the following special treatment. If the machine of
interest to you does 32-bit addressing (or doesn’t require it; see

Machine Dependencies
), you can ignore this issue.

In order to assemble compiler output into something that will work,
as will occasionlly do strange things to .word directives. Directives
of the form .word sym1-sym2 are often emitted by compilers as part of
jump tables. Therefore, when as assembles a directive of the form
.word sym1-sym2, and the difference between sym1 and sym2 does not fit
in 16 bits, as will create a secondary jump table, immediately before
the next label. This secondary jump table will be preceded by a
short-jump to the first byte after the secondary table. This
short-jump prevents the flow of control from accidentally falling into
the new table. Inside the table will be a long-jump to sym2. The
original .word will contain sym1 minus the address of the long-jump to
sym2.

If there were several occurrences of .word sym1-sym2 before the
secondary jump table, all of them will be adjusted. If there was a
.word sym3-sym4, that also did not fit in sixteen bits, a long-jump to
sym4 will be included in the secondary jump table, and the .word
directives will be adjusted to contain sym3 minus the address of the
long-jump to sym4; and so on, for as many entries in the original jump
table as necessary.

as 55 / 143

1.115 as.guide/Deprecated

Deprecated Directives
=====================

One day these directives won’t work. They are included for
compatibility with older assemblers.
.abort
.app-file
.line

1.116 as.guide/Machine Dependencies

Machine Dependent Features

The machine instruction sets are (almost by definition) different on
each machine where as runs. Floating point representations vary as
well, and as often supports a few additional directives or command-line
options for compatibility with other assemblers on a particular
platform. Finally, some versions of as support special
pseudo-instructions for branch optimization.

This chapter discusses most of these differences, though it does not
include details on any machine’s instruction set. For details on that
subject, see the hardware manufacturer’s manual.

Vax-Dependent
VAX Dependent Features

AMD29K-Dependent
AMD 29K Dependent Features

H8-300-Dependent
Hitachi H8/300 Dependent Features

H8-500-Dependent
Hitachi H8/500 Dependent Features

SH-Dependent
Hitachi SH Dependent Features

i960-Dependent
Intel 80960 Dependent Features

as 56 / 143

M68K-Dependent
M680x0 Dependent Features

Sparc-Dependent
SPARC Dependent Features

Z8000-Dependent
Z8000 Dependent Features

i386-Dependent
80386 Dependent Features

1.117 as.guide/Vax-Dependent

VAX Dependent Features
======================

Vax-Opts
VAX Command-Line Options

VAX-float
VAX Floating Point

VAX-directives
Vax Machine Directives

VAX-opcodes
VAX Opcodes

VAX-branch
VAX Branch Improvement

VAX-operands
VAX Operands

VAX-no
Not Supported on VAX

1.118 as.guide/Vax-Opts

VAX Command-Line Options

as 57 / 143

The Vax version of as accepts any of the following options, gives a
warning message that the option was ignored and proceeds. These
options are for compatibility with scripts designed for other people’s
assemblers.

-D (Debug)
-S (Symbol Table)
-T (Token Trace)

These are obsolete options used to debug old assemblers.

-d (Displacement size for JUMPs)
This option expects a number following the -d. Like options that
expect filenames, the number may immediately follow the -d (old
standard) or constitute the whole of the command line argument
that follows -d (GNU standard).

-V (Virtualize Interpass Temporary File)
Some other assemblers use a temporary file. This option commanded
them to keep the information in active memory rather than in a
disk file. as always does this, so this option is redundant.

-J (JUMPify Longer Branches)
Many 32-bit computers permit a variety of branch instructions to
do the same job. Some of these instructions are short (and fast)
but have a limited range; others are long (and slow) but can
branch anywhere in virtual memory. Often there are 3 flavors of
branch: short, medium and long. Some other assemblers would emit
short and medium branches, unless told by this option to emit
short and long branches.

-t (Temporary File Directory)
Some other assemblers may use a temporary file, and this option
takes a filename being the directory to site the temporary file.
Since as does not use a temporary disk file, this option makes no
difference. -t needs exactly one filename.

The Vax version of the assembler accepts two options when compiled
for VMS. They are -h, and -+. The -h option prevents as from
modifying the symbol-table entries for symbols that contain lowercase
characters (I think). The -+ option causes as to print warning
messages if the FILENAME part of the object file, or any symbol name is
larger than 31 characters. The -+ option also insertes some code
following the _main symbol so that the object file will be compatible
with Vax-11 "C".

1.119 as.guide/VAX-float

VAX Floating Point

Conversion of flonums to floating point is correct, and compatible
with previous assemblers. Rounding is towards zero if the remainder is
exactly half the least significant bit.

as 58 / 143

D, F, G and H floating point formats are understood.

Immediate floating literals (e.g. S‘$6.9) are rendered correctly.
Again, rounding is towards zero in the boundary case.

The .float directive produces f format numbers. The .double
directive produces d format numbers.

1.120 as.guide/VAX-directives

Vax Machine Directives

The Vax version of the assembler supports four directives for
generating Vax floating point constants. They are described in the
table below.

.dfloat
This expects zero or more flonums, separated by commas, and
assembles Vax d format 64-bit floating point constants.

.ffloat
This expects zero or more flonums, separated by commas, and
assembles Vax f format 32-bit floating point constants.

.gfloat
This expects zero or more flonums, separated by commas, and
assembles Vax g format 64-bit floating point constants.

.hfloat
This expects zero or more flonums, separated by commas, and
assembles Vax h format 128-bit floating point constants.

1.121 as.guide/VAX-opcodes

VAX Opcodes

All DEC mnemonics are supported. Beware that case... instructions
have exactly 3 operands. The dispatch table that follows the case...
instruction should be made with .word statements. This is compatible
with all unix assemblers we know of.

1.122 as.guide/VAX-branch

as 59 / 143

VAX Branch Improvement

Certain pseudo opcodes are permitted. They are for branch
instructions. They expand to the shortest branch instruction that will
reach the target. Generally these mnemonics are made by substituting j
for b at the start of a DEC mnemonic. This feature is included both
for compatibility and to help compilers. If you don’t need this
feature, don’t use these opcodes. Here are the mnemonics, and the code
they can expand into.

jbsb
Jsb is already an instruction mnemonic, so we chose jbsb.
(byte displacement)

bsbb ...

(word displacement)
bsbw ...

(long displacement)
jsb ...

jbr
jr

Unconditional branch.
(byte displacement)

brb ...

(word displacement)
brw ...

(long displacement)
jmp ...

jCOND
COND may be any one of the conditional branches neq, nequ, eql,
eqlu, gtr, geq, lss, gtru, lequ, vc, vs, gequ, cc, lssu, cs. COND
may also be one of the bit tests bs, bc, bss, bcs, bsc, bcc, bssi,
bcci, lbs, lbc. NOTCOND is the opposite condition to COND.
(byte displacement)

bCOND ...

(word displacement)
bNOTCOND foo ; brw ... ; foo:

(long displacement)
bNOTCOND foo ; jmp ... ; foo:

jacbX
X may be one of b d f g h l w.
(word displacement)

OPCODE ...

(long displacement)
OPCODE ..., foo ;
brb bar ;

as 60 / 143

foo: jmp ... ;
bar:

jaobYYY
YYY may be one of lss leq.

jsobZZZ
ZZZ may be one of geq gtr.
(byte displacement)

OPCODE ...

(word displacement)
OPCODE ..., foo ;
brb bar ;
foo: brw destination ;
bar:

(long displacement)
OPCODE ..., foo ;
brb bar ;
foo: jmp destination ;
bar:

aobleq
aoblss
sobgeq
sobgtr

(byte displacement)
OPCODE ...

(word displacement)
OPCODE ..., foo ;
brb bar ;
foo: brw destination ;
bar:

(long displacement)
OPCODE ..., foo ;
brb bar ;
foo: jmp destination ;
bar:

1.123 as.guide/VAX-operands

VAX Operands

The immediate character is $ for Unix compatibility, not # as DEC
writes it.

The indirect character is * for Unix compatibility, not @ as DEC
writes it.

The displacement sizing character is ‘ (an accent grave) for Unix

as 61 / 143

compatibility, not ^ as DEC writes it. The letter preceding ‘ may have
either case. G is not understood, but all other letters (b i l s w)
are understood.

Register names understood are r0 r1 r2 ... r15 ap fp sp pc. Any
case of letters will do.

For instance
tstb *w‘$4(r5)

Any expression is permitted in an operand. Operands are comma
separated.

1.124 as.guide/VAX-no

Not Supported on VAX

Vax bit fields can not be assembled with as. Someone can add the
required code if they really need it.

1.125 as.guide/AMD29K-Dependent

AMD 29K Dependent Features
==========================

AMD29K Options
Options

AMD29K Syntax
Syntax

AMD29K Floating Point
Floating Point

AMD29K Directives
AMD 29K Machine Directives

AMD29K Opcodes
Opcodes

1.126 as.guide/AMD29K Options

as 62 / 143

Options

as has no additional command-line options for the AMD 29K family.

1.127 as.guide/AMD29K Syntax

Syntax

AMD29K-Chars
Special Characters

AMD29K-Regs
Register Names

1.128 as.guide/AMD29K-Chars

Special Characters
..................

; is the line comment character.

@ can be used instead of a newline to separate statements.

The character ? is permitted in identifiers (but may not begin an
identifier).

1.129 as.guide/AMD29K-Regs

Register Names
..............

General-purpose registers are represented by predefined symbols of
the form GRnnn (for global registers) or LRnnn (for local registers),
where nnn represents a number between 0 and 127, written with no
leading zeros. The leading letters may be in either upper or lower
case; for example, gr13 and LR7 are both valid register names.

You may also refer to general-purpose registers by specifying the
register number as the result of an expression (prefixed with %% to
flag the expression as a register number):

%%expression

as 63 / 143

--where expression must be an absolute expression evaluating to a
number between 0 and 255. The range [0, 127] refers to global
registers, and the range [128, 255] to local registers.

In addition, as understands the following protected special-purpose
register names for the AMD 29K family:

vab chd pc0
ops chc pc1
cps rbp pc2
cfg tmc mmu
cha tmr lru

These unprotected special-purpose register names are also recognized:
ipc alu fpe
ipa bp inte
ipb fc fps
q cr exop

1.130 as.guide/AMD29K Floating Point

Floating Point

The AMD 29K family uses IEEE floating-point numbers.

1.131 as.guide/AMD29K Directives

AMD 29K Machine Directives

.block size , fill
This directive emits size bytes, each of value fill. Both size
and fill are absolute expressions. If the comma and fill are
omitted, fill is assumed to be zero.

In other versions of the GNU assembler, this directive is called
.space.

.cputype
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

.file
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

Warning: in other versions of the GNU assembler, .file is
used for the directive called .app-file in the AMD 29K

as 64 / 143

support.

.line
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

.sect
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

.use section name
Establishes the section and subsection for the following code;
section name may be one of .text, .data, .data1, or .lit. With
one of the first three section name options, .use is equivalent to
the machine directive section name; the remaining case, .use .lit,
is the same as .data 200.

1.132 as.guide/AMD29K Opcodes

Opcodes

as implements all the standard AMD 29K opcodes. No additional
pseudo-instructions are needed on this family.

For information on the 29K machine instruction set, see ‘Am29000
User’s Manual’, Advanced Micro Devices, Inc.

1.133 as.guide/H8-300-Dependent

H8/300 Dependent Features
=========================

H8-300 Options
Options

H8-300 Syntax
Syntax

H8-300 Floating Point
Floating Point

H8-300 Directives
H8/300 Machine Directives

H8-300 Opcodes
Opcodes

as 65 / 143

1.134 as.guide/H8-300 Options

Options

as has no additional command-line options for the Hitachi H8/300
family.

1.135 as.guide/H8-300 Syntax

Syntax

H8-300-Chars
Special Characters

H8-300-Regs
Register Names

H8-300-Addressing
Addressing Modes

1.136 as.guide/H8-300-Chars

Special Characters
..................

; is the line comment character.

$ can be used instead of a newline to separate statements.
Therefore you may not use $ in symbol names on the H8/300.

1.137 as.guide/H8-300-Regs

Register Names
..............

You can use predefined symbols of the form rnh and rnl to refer to
the H8/300 registers as sixteen 8-bit general-purpose registers. n is

as 66 / 143

a digit from 0 to 7); for instance, both r0h and r7l are valid register
names.

You can also use the eight predefined symbols rn to refer to the
H8/300 registers as 16-bit registers (you must use this form for
addressing).

On the H8/300H, you can also use the eight predefined symbols ern
(er0 ... er7) to refer to the 32-bit general purpose registers.

The two control registers are called pc (program counter; a 16-bit
register, except on the H8/300H where it is 24 bits) and ccr (condition
code register; an 8-bit register). r7 is used as the stack pointer,
and can also be called sp.

1.138 as.guide/H8-300-Addressing

Addressing Modes
................

as understands the following addressing modes for the H8/300:
rn

Register direct

@rn
Register indirect

@(d, rn)
@(d:16, rn)
@(d:24, rn)

Register indirect: 16-bit or 24-bit displacement d from register
n. (24-bit displacements are only meaningful on the H8/300H.)

@rn+
Register indirect with post-increment

@-rn
Register indirect with pre-decrement

@ aa
@ aa:8
@ aa:16
@ aa:24

Absolute address aa. (The address size :24 only makes sense on
the H8/300H.)

#xx
#xx:8
#xx:16
#xx:32

Immediate data xx. You may specify the :8, :16, or :32 for
clarity, if you wish; but as neither requires this nor uses
it--the data size required is taken from context.

as 67 / 143

@ @ aa
@ @ aa:8

Memory indirect. You may specify the :8 for clarity, if you wish;
but as neither requires this nor uses it.

1.139 as.guide/H8-300 Floating Point

Floating Point

The H8/300 family has no hardware floating point, but the .float
directive generates IEEE floating-point numbers for compatibility with
other development tools.

1.140 as.guide/H8-300 Directives

H8/300 Machine Directives

as has only one machine-dependent directive for the H8/300:

.h300h
Recognize and emit additional instructions for the H8/300H
variant, and also make .int emit 32-bit numbers rather than the
usual (16-bit) for the H8/300 family.

On the H8/300 family (including the H8/300H) .word directives
generate 16-bit numbers.

1.141 as.guide/H8-300 Opcodes

Opcodes

For detailed information on the H8/300 machine instruction set, see
‘H8/300 Series Programming Manual’ (Hitachi ADE-602-025). For
information specific to the H8/300H, see ‘H8/300H Series Programming
Manual’ (Hitachi).

as implements all the standard H8/300 opcodes. No additional
pseudo-instructions are needed on this family.

The following table summarizes the H8/300 opcodes, and their
arguments. Entries marked * are opcodes used only on the H8/300H.

Legend:
Rs source register

as 68 / 143

Rd destination register
abs absolute address
imm immediate data

disp:N N-bit displacement from a register
pcrel:N N-bit displacement relative to program counter

add.b #imm,rd * andc #imm,ccr
add.b rs,rd band #imm,rd
add.w rs,rd band #imm,@rd

* add.w #imm,rd band #imm,@abs:8

* add.l rs,rd bra pcrel:8

* add.l #imm,rd * bra pcrel:16
adds #imm,rd bt pcrel:8
addx #imm,rd * bt pcrel:16
addx rs,rd brn pcrel:8
and.b #imm,rd * brn pcrel:16
and.b rs,rd bf pcrel:8

* and.w rs,rd * bf pcrel:16

* and.w #imm,rd bhi pcrel:8

* and.l #imm,rd * bhi pcrel:16

* and.l rs,rd bls pcrel:8

* bls pcrel:16 bld #imm,rd
bcc pcrel:8 bld #imm,@rd

* bcc pcrel:16 bld #imm,@abs:8
bhs pcrel:8 bnot #imm,rd

* bhs pcrel:16 bnot #imm,@rd
bcs pcrel:8 bnot #imm,@abs:8

* bcs pcrel:16 bnot rs,rd
blo pcrel:8 bnot rs,@rd

* blo pcrel:16 bnot rs,@abs:8
bne pcrel:8 bor #imm,rd

* bne pcrel:16 bor #imm,@rd
beq pcrel:8 bor #imm,@abs:8

* beq pcrel:16 bset #imm,rd
bvc pcrel:8 bset #imm,@rd

* bvc pcrel:16 bset #imm,@abs:8
bvs pcrel:8 bset rs,rd

* bvs pcrel:16 bset rs,@rd
bpl pcrel:8 bset rs,@abs:8

* bpl pcrel:16 bsr pcrel:8
bmi pcrel:8 bsr pcrel:16

* bmi pcrel:16 bst #imm,rd
bge pcrel:8 bst #imm,@rd

* bge pcrel:16 bst #imm,@abs:8
blt pcrel:8 btst #imm,rd

* blt pcrel:16 btst #imm,@rd
bgt pcrel:8 btst #imm,@abs:8

* bgt pcrel:16 btst rs,rd
ble pcrel:8 btst rs,@rd

* ble pcrel:16 btst rs,@abs:8
bclr #imm,rd bxor #imm,rd
bclr #imm,@rd bxor #imm,@rd
bclr #imm,@abs:8 bxor #imm,@abs:8
bclr rs,rd cmp.b #imm,rd
bclr rs,@rd cmp.b rs,rd
bclr rs,@abs:8 cmp.w rs,rd

as 69 / 143

biand #imm,rd cmp.w rs,rd
biand #imm,@rd * cmp.w #imm,rd
biand #imm,@abs:8 * cmp.l #imm,rd
bild #imm,rd * cmp.l rs,rd
bild #imm,@rd daa rs
bild #imm,@abs:8 das rs
bior #imm,rd dec.b rs
bior #imm,@rd * dec.w #imm,rd
bior #imm,@abs:8 * dec.l #imm,rd
bist #imm,rd divxu.b rs,rd
bist #imm,@rd * divxu.w rs,rd
bist #imm,@abs:8 * divxs.b rs,rd
bixor #imm,rd * divxs.w rs,rd
bixor #imm,@rd eepmov
bixor #imm,@abs:8 * eepmovw

* exts.w rd mov.w rs,@abs:16

* exts.l rd * mov.l #imm,rd

* extu.w rd * mov.l rs,rd

* extu.l rd * mov.l @rs,rd
inc rs * mov.l @(disp:16,rs),rd

* inc.w #imm,rd * mov.l @(disp:24,rs),rd

* inc.l #imm,rd * mov.l @rs+,rd
jmp @rs * mov.l @abs:16,rd
jmp abs * mov.l @abs:24,rd
jmp @@abs:8 * mov.l rs,@rd
jsr @rs * mov.l rs,@(disp:16,rd)
jsr abs * mov.l rs,@(disp:24,rd)
jsr @@abs:8 * mov.l rs,@-rd
ldc #imm,ccr * mov.l rs,@abs:16
ldc rs,ccr * mov.l rs,@abs:24

* ldc @abs:16,ccr movfpe @abs:16,rd

* ldc @abs:24,ccr movtpe rs,@abs:16

* ldc @(disp:16,rs),ccr mulxu.b rs,rd

* ldc @(disp:24,rs),ccr * mulxu.w rs,rd

* ldc @rs+,ccr * mulxs.b rs,rd

* ldc @rs,ccr * mulxs.w rs,rd

* mov.b @(disp:24,rs),rd neg.b rs

* mov.b rs,@(disp:24,rd) * neg.w rs
mov.b @abs:16,rd * neg.l rs
mov.b rs,rd nop
mov.b @abs:8,rd not.b rs
mov.b rs,@abs:8 * not.w rs
mov.b rs,rd * not.l rs
mov.b #imm,rd or.b #imm,rd
mov.b @rs,rd or.b rs,rd
mov.b @(disp:16,rs),rd * or.w #imm,rd
mov.b @rs+,rd * or.w rs,rd
mov.b @abs:8,rd * or.l #imm,rd
mov.b rs,@rd * or.l rs,rd
mov.b rs,@(disp:16,rd) orc #imm,ccr
mov.b rs,@-rd pop.w rs
mov.b rs,@abs:8 * pop.l rs
mov.w rs,@rd push.w rs

* mov.w @(disp:24,rs),rd * push.l rs

* mov.w rs,@(disp:24,rd) rotl.b rs

* mov.w @abs:24,rd * rotl.w rs

as 70 / 143

* mov.w rs,@abs:24 * rotl.l rs
mov.w rs,rd rotr.b rs
mov.w #imm,rd * rotr.w rs
mov.w @rs,rd * rotr.l rs
mov.w @(disp:16,rs),rd rotxl.b rs
mov.w @rs+,rd * rotxl.w rs
mov.w @abs:16,rd * rotxl.l rs
mov.w rs,@(disp:16,rd) rotxr.b rs
mov.w rs,@-rd * rotxr.w rs

* rotxr.l rs * stc ccr,@(disp:24,rd)
bpt * stc ccr,@-rd
rte * stc ccr,@abs:16
rts * stc ccr,@abs:24
shal.b rs sub.b rs,rd

* shal.w rs sub.w rs,rd

* shal.l rs * sub.w #imm,rd
shar.b rs * sub.l rs,rd

* shar.w rs * sub.l #imm,rd

* shar.l rs subs #imm,rd
shll.b rs subx #imm,rd

* shll.w rs subx rs,rd

* shll.l rs * trapa #imm
shlr.b rs xor #imm,rd

* shlr.w rs xor rs,rd

* shlr.l rs * xor.w #imm,rd
sleep * xor.w rs,rd
stc ccr,rd * xor.l #imm,rd

* stc ccr,@rs * xor.l rs,rd

* stc ccr,@(disp:16,rd) xorc #imm,ccr

Four H8/300 instructions (add, cmp, mov, sub) are defined with
variants using the suffixes .b, .w, and .l to specify the size of a
memory operand. as supports these suffixes, but does not require them;
since one of the operands is always a register, as can deduce the
correct size.

For example, since r0 refers to a 16-bit register,
mov r0,@foo

is equivalent to
mov.w r0,@foo

If you use the size suffixes, as issues a warning when the suffix
and the register size do not match.

1.142 as.guide/H8-500-Dependent

H8/500 Dependent Features
=========================

H8-500 Options
Options

as 71 / 143

H8-500 Syntax
Syntax

H8-500 Floating Point
Floating Point

H8-500 Directives
H8/500 Machine Directives

H8-500 Opcodes
Opcodes

1.143 as.guide/H8-500 Options

Options

as has no additional command-line options for the Hitachi H8/500
family.

1.144 as.guide/H8-500 Syntax

Syntax

H8-500-Chars
Special Characters

H8-500-Regs
Register Names

H8-500-Addressing
Addressing Modes

1.145 as.guide/H8-500-Chars

Special Characters
..................

! is the line comment character.

; can be used instead of a newline to separate statements.

as 72 / 143

Since $ has no special meaning, you may use it in symbol names.

1.146 as.guide/H8-500-Regs

Register Names
..............

You can use the predefined symbols r0, r1, r2, r3, r4, r5, r6, and
r7 to refer to the H8/500 registers.

The H8/500 also has these control registers:

cp
code pointer

dp
data pointer

bp
base pointer

tp
stack top pointer

ep
extra pointer

sr
status register

ccr
condition code register

All registers are 16 bits long. To represent 32 bit numbers, use two
adjacent registers; for distant memory addresses, use one of the segment
pointers (cp for the program counter; dp for r0-r3; ep for r4 and r5;
and tp for r6 and r7.

1.147 as.guide/H8-500-Addressing

Addressing Modes
................

as understands the following addressing modes for the H8/500:
Rn

Register direct

@Rn
Register indirect

as 73 / 143

@(d:8, Rn)
Register indirect with 8 bit signed displacement

@(d:16, Rn)
Register indirect with 16 bit signed displacement

@-Rn
Register indirect with pre-decrement

@Rn+
Register indirect with post-increment

@aa:8
8 bit absolute address

@aa:16
16 bit absolute address

#xx:8
8 bit immediate

#xx:16
16 bit immediate

1.148 as.guide/H8-500 Floating Point

Floating Point

The H8/500 family uses IEEE floating-point numbers.

1.149 as.guide/H8-500 Directives

H8/500 Machine Directives

as has no machine-dependent directives for the H8/500. However, on
this platform the .int and .word directives generate 16-bit numbers.

1.150 as.guide/H8-500 Opcodes

Opcodes

For detailed information on the H8/500 machine instruction set, see
‘H8/500 Series Programming Manual’ (Hitachi M21T001).

as 74 / 143

as implements all the standard H8/500 opcodes. No additional
pseudo-instructions are needed on this family.

The following table summarizes H8/500 opcodes and their operands:

Legend:
abs8 8-bit absolute address
abs16 16-bit absolute address
abs24 24-bit absolute address
crb ccr, br, ep, dp, tp, dp
disp8 8-bit displacement
ea rn, @rn, @(d:8, rn), @(d:16, rn),

@-rn, @rn+, @aa:8, @aa:16,
#xx:8, #xx:16

ea_mem @rn, @(d:8, rn), @(d:16, rn),
@-rn, @rn+, @aa:8, @aa:16

ea_noimm rn, @rn, @(d:8, rn), @(d:16, rn),
@-rn, @rn+, @aa:8, @aa:16

fp r6
imm4 4-bit immediate data
imm8 8-bit immediate data
imm16 16-bit immediate data
pcrel8 8-bit offset from program counter
pcrel16 16-bit offset from program counter
qim -2, -1, 1, 2
rd any register
rs a register distinct from rd
rlist comma-separated list of registers in parentheses;

register ranges rd-rs are allowed
sp stack pointer (r7)
sr status register
sz size; .b or .w. If omitted, default .w

ldc[.b] ea,crb bcc[.w] pcrel16
ldc[.w] ea,sr bcc[.b] pcrel8
add[:q] sz qim,ea_noimm bhs[.w] pcrel16
add[:g] sz ea,rd bhs[.b] pcrel8
adds sz ea,rd bcs[.w] pcrel16
addx sz ea,rd bcs[.b] pcrel8
and sz ea,rd blo[.w] pcrel16
andc[.b] imm8,crb blo[.b] pcrel8
andc[.w] imm16,sr bne[.w] pcrel16
bpt bne[.b] pcrel8
bra[.w] pcrel16 beq[.w] pcrel16
bra[.b] pcrel8 beq[.b] pcrel8
bt[.w] pcrel16 bvc[.w] pcrel16
bt[.b] pcrel8 bvc[.b] pcrel8
brn[.w] pcrel16 bvs[.w] pcrel16
brn[.b] pcrel8 bvs[.b] pcrel8
bf[.w] pcrel16 bpl[.w] pcrel16
bf[.b] pcrel8 bpl[.b] pcrel8
bhi[.w] pcrel16 bmi[.w] pcrel16
bhi[.b] pcrel8 bmi[.b] pcrel8
bls[.w] pcrel16 bge[.w] pcrel16
bls[.b] pcrel8 bge[.b] pcrel8

as 75 / 143

blt[.w] pcrel16 mov[:g][.b] imm8,ea_mem
blt[.b] pcrel8 mov[:g][.w] imm16,ea_mem
bgt[.w] pcrel16 movfpe[.b] ea,rd
bgt[.b] pcrel8 movtpe[.b] rs,ea_noimm
ble[.w] pcrel16 mulxu sz ea,rd
ble[.b] pcrel8 neg sz ea
bclr sz imm4,ea_noimm nop
bclr sz rs,ea_noimm not sz ea
bnot sz imm4,ea_noimm or sz ea,rd
bnot sz rs,ea_noimm orc[.b] imm8,crb
bset sz imm4,ea_noimm orc[.w] imm16,sr
bset sz rs,ea_noimm pjmp abs24
bsr[.b] pcrel8 pjmp @rd
bsr[.w] pcrel16 pjsr abs24
btst sz imm4,ea_noimm pjsr @rd
btst sz rs,ea_noimm prtd imm8
clr sz ea prtd imm16
cmp[:e][.b] imm8,rd prts
cmp[:i][.w] imm16,rd rotl sz ea
cmp[:g].b imm8,ea_noimm rotr sz ea
cmp[:g][.w] imm16,ea_noimm rotxl sz ea
Cmp[:g] sz ea,rd rotxr sz ea
dadd rs,rd rtd imm8
divxu sz ea,rd rtd imm16
dsub rs,rd rts
exts[.b] rd scb/f rs,pcrel8
extu[.b] rd scb/ne rs,pcrel8
jmp @rd scb/eq rs,pcrel8
jmp @(imm8,rd) shal sz ea
jmp @(imm16,rd) shar sz ea
jmp abs16 shll sz ea
jsr @rd shlr sz ea
jsr @(imm8,rd) sleep
jsr @(imm16,rd) stc[.b] crb,ea_noimm
jsr abs16 stc[.w] sr,ea_noimm
ldm @sp+,(rlist) stm (rlist),@-sp
link fp,imm8 sub sz ea,rd
link fp,imm16 subs sz ea,rd
mov[:e][.b] imm8,rd subx sz ea,rd
mov[:i][.w] imm16,rd swap[.b] rd
mov[:l][.w] abs8,rd tas[.b] ea
mov[:l].b abs8,rd trapa imm4
mov[:s][.w] rs,abs8 trap/vs
mov[:s].b rs,abs8 tst sz ea
mov[:f][.w] @(disp8,fp),rd unlk fp
mov[:f][.w] rs,@(disp8,fp) xch[.w] rs,rd
mov[:f].b @(disp8,fp),rd xor sz ea,rd
mov[:f].b rs,@(disp8,fp) xorc.b imm8,crb
mov[:g] sz rs,ea_mem xorc.w imm16,sr
mov[:g] sz ea,rd

1.151 as.guide/SH-Dependent

as 76 / 143

Hitachi SH Dependent Features
=============================

SH Options
Options

SH Syntax
Syntax

SH Floating Point
Floating Point

SH Directives
SH Machine Directives

SH Opcodes
Opcodes

1.152 as.guide/SH Options

Options

as has no additional command-line options for the Hitachi SH family.

1.153 as.guide/SH Syntax

Syntax

SH-Chars
Special Characters

SH-Regs
Register Names

SH-Addressing
Addressing Modes

1.154 as.guide/SH-Chars

as 77 / 143

Special Characters
..................

! is the line comment character.

You can use ; instead of a newline to separate statements.

Since $ has no special meaning, you may use it in symbol names.

1.155 as.guide/SH-Regs

Register Names
..............

You can use the predefined symbols r0, r1, r2, r3, r4, r5, r6, r7,
r8, r9, r10, r11, r12, r13, r14, and r15 to refer to the SH
registers.

The SH also has these control registers:

pr
procedure register (holds return address)

pc
program counter

mach
macl

high and low multiply accumulator registers

sr
status register

gbr
global base register

vbr
vector base register (for interrupt vectors)

1.156 as.guide/SH-Addressing

Addressing Modes
................

as understands the following addressing modes for the SH. Rn in
the following refers to any of the numbered registers, but not the
control registers.

Rn

as 78 / 143

Register direct

@Rn
Register indirect

@-Rn
Register indirect with pre-decrement

@Rn+
Register indirect with post-increment

@(disp, Rn)
Register indirect with displacement

@(R0, Rn)
Register indexed

@(disp, GBR)
GBR offset

@(R0, GBR)
GBR indexed

addr
@(disp, PC)

PC relative address (for branch or for addressing memory). The as
implementation allows you to use the simpler form addr anywhere a
PC relative address is called for; the alternate form is supported
for compatibility with other assemblers.

#imm
Immediate data

1.157 as.guide/SH Floating Point

Floating Point

The SH family uses IEEE floating-point numbers.

1.158 as.guide/SH Directives

SH Machine Directives

as has no machine-dependent directives for the SH.

as 79 / 143

1.159 as.guide/SH Opcodes

Opcodes

For detailed information on the SH machine instruction set, see
‘SH-Microcomputer User’s Manual’ (Hitachi Micro Systems, Inc.).

as implements all the standard SH opcodes. No additional
pseudo-instructions are needed on this family. Note, however, that
because as supports a simpler form of PC-relative addressing, you may
simply write (for example)

mov.l bar,r0

where other assemblers might require an explicit displacement to bar
from the program counter:

mov.l @(disp, PC)

Here is a summary of SH opcodes:

Legend:
Rn a numbered register
Rm another numbered register
#imm immediate data
disp displacement
disp8 8-bit displacement
disp12 12-bit displacement

add #imm,Rn lds.l @Rn+,PR
add Rm,Rn mac.w @Rm+,@Rn+
addc Rm,Rn mov #imm,Rn
addv Rm,Rn mov Rm,Rn
and #imm,R0 mov.b Rm,@(R0,Rn)
and Rm,Rn mov.b Rm,@-Rn
and.b #imm,@(R0,GBR) mov.b Rm,@Rn
bf disp8 mov.b @(disp,Rm),R0
bra disp12 mov.b @(disp,GBR),R0
bsr disp12 mov.b @(R0,Rm),Rn
bt disp8 mov.b @Rm+,Rn
clrm mov.b @Rm,Rn
clrt mov.b R0,@(disp,Rm)
cmp/eq #imm,R0 mov.b R0,@(disp,GBR)
cmp/eq Rm,Rn mov.l Rm,@(disp,Rn)
cmp/ge Rm,Rn mov.l Rm,@(R0,Rn)
cmp/gt Rm,Rn mov.l Rm,@-Rn
cmp/hi Rm,Rn mov.l Rm,@Rn
cmp/hs Rm,Rn mov.l @(disp,Rn),Rm
cmp/pl Rn mov.l @(disp,GBR),R0
cmp/pz Rn mov.l @(disp,PC),Rn
cmp/str Rm,Rn mov.l @(R0,Rm),Rn
div0s Rm,Rn mov.l @Rm+,Rn
div0u mov.l @Rm,Rn
div1 Rm,Rn mov.l R0,@(disp,GBR)
exts.b Rm,Rn mov.w Rm,@(R0,Rn)

as 80 / 143

exts.w Rm,Rn mov.w Rm,@-Rn
extu.b Rm,Rn mov.w Rm,@Rn
extu.w Rm,Rn mov.w @(disp,Rm),R0
jmp @Rn mov.w @(disp,GBR),R0
jsr @Rn mov.w @(disp,PC),Rn
ldc Rn,GBR mov.w @(R0,Rm),Rn
ldc Rn,SR mov.w @Rm+,Rn
ldc Rn,VBR mov.w @Rm,Rn
ldc.l @Rn+,GBR mov.w R0,@(disp,Rm)
ldc.l @Rn+,SR mov.w R0,@(disp,GBR)
ldc.l @Rn+,VBR mova @(disp,PC),R0
lds Rn,MACH movt Rn
lds Rn,MACL muls Rm,Rn
lds Rn,PR mulu Rm,Rn
lds.l @Rn+,MACH neg Rm,Rn
lds.l @Rn+,MACL negc Rm,Rn

nop stc VBR,Rn
not Rm,Rn stc.l GBR,@-Rn
or #imm,R0 stc.l SR,@-Rn
or Rm,Rn stc.l VBR,@-Rn
or.b #imm,@(R0,GBR) sts MACH,Rn
rotcl Rn sts MACL,Rn
rotcr Rn sts PR,Rn
rotl Rn sts.l MACH,@-Rn
rotr Rn sts.l MACL,@-Rn
rte sts.l PR,@-Rn
rts sub Rm,Rn
sett subc Rm,Rn
shal Rn subv Rm,Rn
shar Rn swap.b Rm,Rn
shll Rn swap.w Rm,Rn
shll16 Rn tas.b @Rn
shll2 Rn trapa #imm
shll8 Rn tst #imm,R0
shlr Rn tst Rm,Rn
shlr16 Rn tst.b #imm,@(R0,GBR)
shlr2 Rn xor #imm,R0
shlr8 Rn xor Rm,Rn
sleep xor.b #imm,@(R0,GBR)
stc GBR,Rn xtrct Rm,Rn
stc SR,Rn

1.160 as.guide/i960-Dependent

Intel 80960 Dependent Features
==============================

Options-i960
i960 Command-line Options

Floating Point-i960

as 81 / 143

Floating Point

Directives-i960
i960 Machine Directives

Opcodes for i960
i960 Opcodes

1.161 as.guide/Options-i960

i960 Command-line Options

-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
Select the 80960 architecture. Instructions or features not
supported by the selected architecture cause fatal errors.

-ACA is equivalent to -ACA_A; -AKC is equivalent to -AMC.
Synonyms are provided for compatibility with other tools.

If none of these options is specified, as will generate code for
any instruction or feature that is supported by some version of the
960 (even if this means mixing architectures!). In principle, as
will attempt to deduce the minimal sufficient processor type if
none is specified; depending on the object code format, the
processor type may be recorded in the object file. If it is
critical that the as output match a specific architecture, specify
that architecture explicitly.

-b
Add code to collect information about conditional branches taken,
for later optimization using branch prediction bits. (The
conditional branch instructions have branch prediction bits in the
CA, CB, and CC architectures.) If BR represents a conditional
branch instruction, the following represents the code generated by
the assembler when -b is specified:

call increment routine
.word 0 # pre-counter

Label: BR
call increment routine
.word 0 # post-counter

The counter following a branch records the number of times that
branch was not taken; the differenc between the two counters is the
number of times the branch was taken.

A table of every such Label is also generated, so that the
external postprocessor gbr960 (supplied by Intel) can locate all
the counters. This table is always labelled __BRANCH_TABLE__;
this is a local symbol to permit collecting statistics for many
separate object files. The table is word aligned, and begins with
a two-word header. The first word, initialized to 0, is used in

as 82 / 143

maintaining linked lists of branch tables. The second word is a
count of the number of entries in the table, which follow
immediately: each is a word, pointing to one of the labels
illustrated above.

+------------+------------+------------+ ... +------------+
*NEXT	COUNT: N	*BRLAB 1		*BRLAB N
+------------+------------+------------+ ... +------------+

__BRANCH_TABLE__ layout

The first word of the header is used to locate multiple branch
tables, since each object file may contain one. Normally the links
are maintained with a call to an initialization routine, placed at
the beginning of each function in the file. The GNU C compiler
will generate these calls automatically when you give it a -b
option. For further details, see the documentation of gbr960.

-norelax
Normally, Compare-and-Branch instructions with targets that require
displacements greater than 13 bits (or that have external targets)
are replaced with the corresponding compare (or chkbit) and branch
instructions. You can use the -norelax option to specify that as
should generate errors instead, if the target displacement is
larger than 13 bits.

This option does not affect the Compare-and-Jump instructions; the
code emitted for them is always adjusted when necessary (depending
on displacement size), regardless of whether you use -norelax.

1.162 as.guide/Floating Point-i960

Floating Point

as generates IEEE floating-point numbers for the directives .float,
.double, .extended, and .single.

1.163 as.guide/Directives-i960

i960 Machine Directives

.bss symbol, length, align
Reserve length bytes in the bss section for a local symbol,
aligned to the power of two specified by align. length and align
must be positive absolute expressions. This directive differs
from .lcomm only in that it permits you to specify an alignment.

as 83 / 143

See
.lcomm
.

.extended flonums
.extended expects zero or more flonums, separated by commas; for
each flonum, .extended emits an IEEE extended-format (80-bit)
floating-point number.

.leafproc call-lab, bal-lab
You can use the .leafproc directive in conjunction with the
optimized callj instruction to enable faster calls of leaf
procedures. If a procedure is known to call no other procedures,
you may define an entry point that skips procedure prolog code
(and that does not depend on system-supplied saved context), and
declare it as the bal-lab using .leafproc. If the procedure also
has an entry point that goes through the normal prolog, you can
specify that entry point as call-lab.

A .leafproc declaration is meant for use in conjunction with the
optimized call instruction callj; the directive records the data
needed later to choose between converting the callj into a bal or
a call.

call-lab is optional; if only one argument is present, or if the
two arguments are identical, the single argument is assumed to be
the bal entry point.

.sysproc name, index
The .sysproc directive defines a name for a system procedure.
After you define it using .sysproc, you can use name to refer to
the system procedure identified by index when calling procedures
with the optimized call instruction callj.

Both arguments are required; index must be between 0 and 31
(inclusive).

1.164 as.guide/Opcodes for i960

i960 Opcodes

All Intel 960 machine instructions are supported; see

i960 Command-line Options
for a discussion of selecting the instruction

subset for a particular 960 architecture.

Some opcodes are processed beyond simply emitting a single
corresponding instruction: callj, and Compare-and-Branch or
Compare-and-Jump instructions with target displacements larger than 13
bits.

as 84 / 143

callj-i960
callj

Compare-and-branch-i960
Compare-and-Branch

1.165 as.guide/callj-i960

callj
.....

You can write callj to have the assembler or the linker determine
the most appropriate form of subroutine call: call, bal, or calls. If
the assembly source contains enough information--a .leafproc or
.sysproc directive defining the operand--then as will translate the
callj; if not, it will simply emit the callj, leaving it for the linker
to resolve.

1.166 as.guide/Compare-and-branch-i960

Compare-and-Branch
..................

The 960 architectures provide combined Compare-and-Branch
instructions that permit you to store the branch target in the lower 13
bits of the instruction word itself. However, if you specify a branch
target far enough away that its address won’t fit in 13 bits, the
assembler can either issue an error, or convert your Compare-and-Branch
instruction into separate instructions to do the compare and the branch.

Whether as gives an error or expands the instruction depends on two
choices you can make: whether you use the -norelax option, and whether
you use a "Compare and Branch" instruction or a "Compare and Jump"
instruction. The "Jump" instructions are always expanded if necessary;
the "Branch" instructions are expanded when necessary unless you
specify -norelax--in which case as gives an error instead.

These are the Compare-and-Branch instructions, their "Jump" variants,
and the instruction pairs they may expand into:

Compare and
Branch Jump Expanded to
------ ------ ------------

bbc chkbit; bno
bbs chkbit; bo

cmpibe cmpije cmpi; be
cmpibg cmpijg cmpi; bg

as 85 / 143

cmpibge cmpijge cmpi; bge
cmpibl cmpijl cmpi; bl
cmpible cmpijle cmpi; ble
cmpibno cmpijno cmpi; bno
cmpibne cmpijne cmpi; bne
cmpibo cmpijo cmpi; bo
cmpobe cmpoje cmpo; be
cmpobg cmpojg cmpo; bg
cmpobge cmpojge cmpo; bge
cmpobl cmpojl cmpo; bl
cmpoble cmpojle cmpo; ble
cmpobne cmpojne cmpo; bne

1.167 as.guide/M68K-Dependent

M680x0 Dependent Features
=========================

M68K-Opts
M680x0 Options

M68K-Syntax
Syntax

M68K-Moto-Syntax
Motorola Syntax

M68K-Float
Floating Point

M68K-Directives
680x0 Machine Directives

M68K-opcodes
Opcodes

1.168 as.guide/M68K-Opts

M680x0 Options

The Motorola 680x0 version of as has two machine dependent options.
One shortens undefined references from 32 to 16 bits, while the other
is used to tell as what kind of machine it is assembling for.

You can use the -l option to shorten the size of references to
undefined symbols. If the -l option is not given, references to

as 86 / 143

undefined symbols will be a full long (32 bits) wide. (Since as cannot
know where these symbols will end up, as can only allocate space for
the linker to fill in later. Since as doesn’t know how far away these
symbols will be, it allocates as much space as it can.) If this option
is given, the references will only be one word wide (16 bits). This
may be useful if you want the object file to be as small as possible,
and you know that the relevant symbols will be less than 17 bits away.

The 680x0 version of as is most frequently used to assemble programs
for the Motorola MC68020 microprocessor. Occasionally it is used to
assemble programs for the mostly similar, but slightly different
MC68000 or MC68010 microprocessors. You can give as the options
-m68000, -mc68000, -m68010, -mc68010, -m68020, and -mc68020 to tell
it what processor is the target.

1.169 as.guide/M68K-Syntax

Syntax

This syntax for the Motorola 680x0 was developed at MIT.

The 680x0 version of as uses syntax similar to the Sun assembler.
Intervening periods are now ignored; for example, movl is equivalent to
move.l.

In the following table apc stands for any of the address registers
(a0 through a7), nothing, (), the Program Counter (pc), or the
zero-address relative to the program counter (zpc).

The following addressing modes are understood:
Immediate

#digits

Data Register
d0 through d7

Address Register
a0 through a7

Address Register Indirect
a0@ through a7@
a7 is also known as sp, i.e. the Stack Pointer. a6 is also known
as fp, the Frame Pointer.

Address Register Postincrement
a0@+ through a7@+

Address Register Predecrement
a0@- through a7@-

Indirect Plus Offset
apc @(digits)

as 87 / 143

Index
apc @(digits,register:size:scale)

or apc @(register:size:scale)

Postindex
apc @(digits)@(digits,register:size:scale)

or apc @(digits)@(register:size:scale)

Preindex
apc @(digits,register:size:scale)@(digits)

or apc @(register:size:scale)@(digits)

Memory Indirect
apc @(digits)@(digits)

Absolute
symbol, or digits

For some configurations, especially those where the compiler normally
does not prepend an underscore to the names of user variables, the
assembler requires a % before any use of a register name. This is
intended to let the assembler distinguish between user variables and
registers named a0 through a7, et cetera. The % is always accepted,
but is only required for some configurations, notably m68k-coff.

1.170 as.guide/M68K-Moto-Syntax

Motorola Syntax

The standard Motorola syntax for this chip differs from the syntax
already discussed (see

Syntax
). as can accept both kinds of syntax,

even within a single instruction. The syntaxes are fully compatible,
because the Motorola syntax never uses the @ character and the MIT
syntax always does, except in cases where the syntaxes are identical.

In particular, you may write or generate M68K assembler with the
following conventions:

(In the following table apc stands for any of the address registers
(a0 through a7), nothing, (), the Program Counter (pc), or the
zero-address relative to the program counter (zpc).)

The following additional addressing modes are understood:
Address Register Indirect

a0 through a7
a7 is also known as sp, i.e. the Stack Pointer. a6 is also known
as fp, the Frame Pointer.

as 88 / 143

Address Register Postincrement
(a0)+ through (a7)+

Address Register Predecrement
-(a0) through -(a7)

Indirect Plus Offset
digits(apc)

Index
digits(apc,(register.size*scale)
or (apc,register.size*scale)
In either case, size and scale are optional (scale defaults to 1,
size defaults to l). scale can be 1, 2, 4, or 8. size can be w
or l. scale is only supported on the 68020 and greater.

1.171 as.guide/M68K-Float

Floating Point

The floating point code is not too well tested, and may have subtle
bugs in it.

Packed decimal (P) format floating literals are not supported. Feel
free to add the code!

The floating point formats generated by directives are these.

.float
Single precision floating point constants.

.double
Double precision floating point constants.

There is no directive to produce regions of memory holding extended
precision numbers, however they can be used as immediate operands to
floating-point instructions. Adding a directive to create extended
precision numbers would not be hard, but it has not yet seemed
necessary.

1.172 as.guide/M68K-Directives

680x0 Machine Directives

In order to be compatible with the Sun assembler the 680x0 assembler
understands the following directives.

as 89 / 143

.data1
This directive is identical to a .data 1 directive.

.data2
This directive is identical to a .data 2 directive.

.even
This directive is identical to a .align 1 directive.

.skip
This directive is identical to a .space directive.

1.173 as.guide/M68K-opcodes

Opcodes

M68K-Branch
Branch Improvement

M68K-Chars
Special Characters

1.174 as.guide/M68K-Branch

Branch Improvement
..................

Certain pseudo opcodes are permitted for branch instructions. They
expand to the shortest branch instruction that will reach the target.
Generally these mnemonics are made by substituting j for b at the start
of a Motorola mnemonic.

The following table summarizes the pseudo-operations. A * flags
cases that are more fully described after the table:

Displacement
+---
| 68020 68000/10

Pseudo-Op |BYTE WORD LONG LONG non-PC relative
+---

jbsr |bsrs bsr bsrl jsr jsr
jra |bras bra bral jmp jmp

* jXX |bXXs bXX bXXl bNXs;jmpl bNXs;jmp

* dbXX |dbXX dbXX dbXX; bra; jmpl

* fjXX |fbXXw fbXXw fbXXl fbNXw;jmp

as 90 / 143

XX: condition
NX: negative of condition XX

*--see full description below

jbsr
jra

These are the simplest jump pseudo-operations; they always map to
one particular machine instruction, depending on the displacement
to the branch target.

jXX
Here, jXX stands for an entire family of pseudo-operations, where
XX is a conditional branch or condition-code test. The full list
of pseudo-ops in this family is:

jhi jls jcc jcs jne jeq jvc
jvs jpl jmi jge jlt jgt jle

For the cases of non-PC relative displacements and long
displacements on the 68000 or 68010, as will issue a longer code
fragment in terms of NX, the opposite condition to XX. For
example, for the non-PC relative case:

jXX foo
gives

bNXs oof
jmp foo

oof:

dbXX
The full family of pseudo-operations covered here is

dbhi dbls dbcc dbcs dbne dbeq dbvc
dbvs dbpl dbmi dbge dblt dbgt dble
dbf dbra dbt

Other than for word and byte displacements, when the source reads
dbXX foo, as will emit

dbXX oo1
bra oo2

oo1:jmpl foo
oo2:

fjXX
This family includes

fjne fjeq fjge fjlt fjgt fjle fjf
fjt fjgl fjgle fjnge fjngl fjngle fjngt
fjnle fjnlt fjoge fjogl fjogt fjole fjolt
fjor fjseq fjsf fjsne fjst fjueq fjuge
fjugt fjule fjult fjun

For branch targets that are not PC relative, as emits
fbNX oof
jmp foo

oof:
when it encounters fjXX foo.

as 91 / 143

1.175 as.guide/M68K-Chars

Special Characters
..................

The immediate character is # for Sun compatibility. The
line-comment character is |. If a # appears at the beginning of a
line, it is treated as a comment unless it looks like # line file, in
which case it is treated normally.

1.176 as.guide/Sparc-Dependent

SPARC Dependent Features
========================

Sparc-Opts
Options

Sparc-Float
Floating Point

Sparc-Directives
Sparc Machine Directives

1.177 as.guide/Sparc-Opts

Options

The SPARC chip family includes several successive levels (or other
variants) of chip, using the same core instruction set, but including a
few additional instructions at each level.

By default, as assumes the core instruction set (SPARC v6), but
"bumps" the architecture level as needed: it switches to successively
higher architectures as it encounters instructions that only exist in
the higher levels.

-Av6 | -Av7 | -Av8 | -Asparclite
Use one of the -A options to select one of the SPARC architectures
explicitly. If you select an architecture explicitly, as reports
a fatal error if it encounters an instruction or feature requiring
a higher level.

-bump
Permit the assembler to "bump" the architecture level as required,
but warn whenever it is necessary to switch to another level.

as 92 / 143

1.178 as.guide/Sparc-Float

Floating Point

The Sparc uses IEEE floating-point numbers.

1.179 as.guide/Sparc-Directives

Sparc Machine Directives

The Sparc version of as supports the following additional machine
directives:

.common
This must be followed by a symbol name, a positive number, and
"bss". This behaves somewhat like .comm, but the syntax is
different.

.half
This is functionally identical to .short.

.proc
This directive is ignored. Any text following it on the same line
is also ignored.

.reserve
This must be followed by a symbol name, a positive number, and
"bss". This behaves somewhat like .lcomm, but the syntax is
different.

.seg
This must be followed by "text", "data", or "data1". It behaves
like .text, .data, or .data 1.

.skip
This is functionally identical to the .space directive.

.word
On the Sparc, the .word directive produces 32 bit values, instead
of the 16 bit values it produces on many other machines.

1.180 as.guide/i386-Dependent

as 93 / 143

80386 Dependent Features
========================

i386-Options
Options

i386-Syntax
AT&T Syntax versus Intel Syntax

i386-Opcodes
Opcode Naming

i386-Regs
Register Naming

i386-prefixes
Opcode Prefixes

i386-Memory
Memory References

i386-jumps
Handling of Jump Instructions

i386-Float
Floating Point

i386-Notes
Notes

1.181 as.guide/i386-Options

Options

The 80386 has no machine dependent options.

1.182 as.guide/i386-Syntax

AT&T Syntax versus Intel Syntax

In order to maintain compatibility with the output of gcc, as
supports AT&T System V/386 assembler syntax. This is quite different
from Intel syntax. We mention these differences because almost all
80386 documents used only Intel syntax. Notable differences between

as 94 / 143

the two syntaxes are:

* AT&T immediate operands are preceded by $; Intel immediate
operands are undelimited (Intel push 4 is AT&T pushl $4). AT&T
register operands are preceded by %; Intel register operands are
undelimited. AT&T absolute (as opposed to PC relative) jump/call
operands are prefixed by *; they are undelimited in Intel syntax.

* AT&T and Intel syntax use the opposite order for source and
destination operands. Intel add eax, 4 is addl $4, %eax. The
source, dest convention is maintained for compatibility with
previous Unix assemblers.

* In AT&T syntax the size of memory operands is determined from the
last character of the opcode name. Opcode suffixes of b, w, and l
specify byte (8-bit), word (16-bit), and long (32-bit) memory
references. Intel syntax accomplishes this by prefixes memory
operands (not the opcodes themselves) with byte ptr, word ptr, and
dword ptr. Thus, Intel mov al, byte ptr foo is movb foo, %al in
AT&T syntax.

* Immediate form long jumps and calls are lcall/ljmp $section,
$offset in AT&T syntax; the Intel syntax is call/jmp far
section:offset. Also, the far return instruction is lret
$stack-adjust in AT&T syntax; Intel syntax is ret far
stack-adjust.

* The AT&T assembler does not provide support for multiple section
programs. Unix style systems expect all programs to be single
sections.

1.183 as.guide/i386-Opcodes

Opcode Naming

Opcode names are suffixed with one character modifiers which specify
the size of operands. The letters b, w, and l specify byte, word, and
long operands. If no suffix is specified by an instruction and it
contains no memory operands then as tries to fill in the missing suffix
based on the destination register operand (the last one by convention).
Thus, mov %ax, %bx is equivalent to movw %ax, %bx; also, mov $1, %bx is
equivalent to movw $1, %bx. Note that this is incompatible with the
AT&T Unix assembler which assumes that a missing opcode suffix implies
long operand size. (This incompatibility does not affect compiler
output since compilers always explicitly specify the opcode suffix.)

Almost all opcodes have the same names in AT&T and Intel format.
There are a few exceptions. The sign extend and zero extend
instructions need two sizes to specify them. They need a size to
sign/zero extend from and a size to zero extend to. This is
accomplished by using two opcode suffixes in AT&T syntax. Base names
for sign extend and zero extend are movs... and movz... in AT&T syntax
(movsx and movzx in Intel syntax). The opcode suffixes are tacked

as 95 / 143

on to this base name, the from suffix before the to suffix. Thus,
movsbl %al, %edx is AT&T syntax for "move sign extend from %al to
%edx." Possible suffixes, thus, are bl (from byte to long), bw (from
byte to word), and wl (from word to long).

The Intel-syntax conversion instructions

* cbw -- sign-extend byte in %al to word in %ax,

* cwde -- sign-extend word in %ax to long in %eax,

* cwd -- sign-extend word in %ax to long in %dx:%ax,

* cdq -- sign-extend dword in %eax to quad in %edx:%eax,

are called cbtw, cwtl, cwtd, and cltd in AT&T naming. as accepts
either naming for these instructions.

Far call/jump instructions are lcall and ljmp in AT&T syntax, but
are call far and jump far in Intel convention.

1.184 as.guide/i386-Regs

Register Naming

Register operands are always prefixes with %. The 80386 registers
consist of

* the 8 32-bit registers %eax (the accumulator), %ebx, %ecx, %edx,
%edi, %esi, %ebp (the frame pointer), and %esp (the stack pointer).

* the 8 16-bit low-ends of these: %ax, %bx, %cx, %dx, %di, %si, %bp,
and %sp.

* the 8 8-bit registers: %ah, %al, %bh, %bl, %ch, %cl, %dh, and %dl
(These are the high-bytes and low-bytes of %ax, %bx, %cx, and %dx)

* the 6 section registers %cs (code section), %ds (data section),
%ss (stack section), %es, %fs, and %gs.

* the 3 processor control registers %cr0, %cr2, and %cr3.

* the 6 debug registers %db0, %db1, %db2, %db3, %db6, and %db7.

* the 2 test registers %tr6 and %tr7.

* the 8 floating point register stack %st or equivalently %st(0),
%st(1), %st(2), %st(3), %st(4), %st(5), %st(6), and %st(7).

as 96 / 143

1.185 as.guide/i386-prefixes

Opcode Prefixes

Opcode prefixes are used to modify the following opcode. They are
used to repeat string instructions, to provide section overrides, to
perform bus lock operations, and to give operand and address size
(16-bit operands are specified in an instruction by prefixing what would
normally be 32-bit operands with a "operand size" opcode prefix).
Opcode prefixes are usually given as single-line instructions with no
operands, and must directly precede the instruction they act upon. For
example, the scas (scan string) instruction is repeated with:

repne
scas

Here is a list of opcode prefixes:

* Section override prefixes cs, ds, ss, es, fs, gs. These are
automatically added by specifying using the section:memory-operand
form for memory references.

* Operand/Address size prefixes data16 and addr16 change 32-bit
operands/addresses into 16-bit operands/addresses. Note that
16-bit addressing modes (i.e. 8086 and 80286 addressing modes) are
not supported (yet).

* The bus lock prefix lock inhibits interrupts during execution of
the instruction it precedes. (This is only valid with certain
instructions; see a 80386 manual for details).

* The wait for coprocessor prefix wait waits for the coprocessor to
complete the current instruction. This should never be needed for
the 80386/80387 combination.

* The rep, repe, and repne prefixes are added to string instructions
to make them repeat %ecx times.

1.186 as.guide/i386-Memory

Memory References

An Intel syntax indirect memory reference of the form

section:[base + index*scale + disp]

is translated into the AT&T syntax

section:disp(base, index, scale)

where base and index are the optional 32-bit base and index registers,
disp is the optional displacement, and scale, taking the values 1, 2,

as 97 / 143

4, and 8, multiplies index to calculate the address of the operand. If
no scale is specified, scale is taken to be 1. section specifies the
optional section register for the memory operand, and may override the
default section register (see a 80386 manual for section register
defaults). Note that section overrides in AT&T syntax must have be
preceded by a %. If you specify a section override which coincides
with the default section register, as will not output any section
register override prefixes to assemble the given instruction. Thus,
section overrides can be specified to emphasize which section register
is used for a given memory operand.

Here are some examples of Intel and AT&T style memory references:

AT&T: -4(%ebp), Intel: [ebp - 4]
base is %ebp; disp is -4. section is missing, and the default
section is used (%ss for addressing with %ebp as the base
register). index, scale are both missing.

AT&T: foo(,%eax,4), Intel: [foo + eax*4]
index is %eax (scaled by a scale 4); disp is foo. All other
fields are missing. The section register here defaults to %ds.

AT&T: foo(,1); Intel [foo]
This uses the value pointed to by foo as a memory operand. Note
that base and index are both missing, but there is only one ,.
This is a syntactic exception.

AT&T: %gs:foo; Intel gs:foo
This selects the contents of the variable foo with section
register section being %gs.

Absolute (as opposed to PC relative) call and jump operands must be
prefixed with *. If no * is specified, as will always choose PC
relative addressing for jump/call labels.

Any instruction that has a memory operand must specify its size
(byte, word, or long) with an opcode suffix (b, w, or l, respectively).

1.187 as.guide/i386-jumps

Handling of Jump Instructions

Jump instructions are always optimized to use the smallest possible
displacements. This is accomplished by using byte (8-bit) displacement
jumps whenever the target is sufficiently close. If a byte displacement
is insufficient a long (32-bit) displacement is used. We do not support
word (16-bit) displacement jumps (i.e. prefixing the jump instruction
with the addr16 opcode prefix), since the 80386 insists upon masking
%eip to 16 bits after the word displacement is added.

Note that the jcxz, jecxz, loop, loopz, loope, loopnz and loopne
instructions only come in byte displacements, so that it is possible
that use of these instructions (gcc does not use them) will cause the

as 98 / 143

assembler to print an error message (and generate incorrect code). The
AT&T 80386 assembler tries to get around this problem by expanding jcxz
foo to

jcxz cx_zero
jmp cx_nonzero

cx_zero: jmp foo
cx_nonzero:

1.188 as.guide/i386-Float

Floating Point

All 80387 floating point types except packed BCD are supported.
(BCD support may be added without much difficulty). These data types
are 16-, 32-, and 64- bit integers, and single (32-bit), double
(64-bit), and extended (80-bit) precision floating point. Each
supported type has an opcode suffix and a constructor associated with
it. Opcode suffixes specify operand’s data types. Constructors build
these data types into memory.

* Floating point constructors are .float or .single, .double, and
.tfloat for 32-, 64-, and 80-bit formats. These correspond to
opcode suffixes s, l, and t. t stands for temporary real, and
that the 80387 only supports this format via the fldt (load
temporary real to stack top) and fstpt (store temporary real and
pop stack) instructions.

* Integer constructors are .word, .long or .int, and .quad for the
16-, 32-, and 64-bit integer formats. The corresponding opcode
suffixes are s (single), l (long), and q (quad). As with the
temporary real format the 64-bit q format is only present in the
fildq (load quad integer to stack top) and fistpq (store quad
integer and pop stack) instructions.

Register to register operations do not require opcode suffixes, so
that fst %st, %st(1) is equivalent to fstl %st, %st(1).

Since the 80387 automatically synchronizes with the 80386 fwait
instructions are almost never needed (this is not the case for the
80286/80287 and 8086/8087 combinations). Therefore, as suppresses the
fwait instruction whenever it is implicitly selected by one of the
fn... instructions. For example, fsave and fnsave are treated
identically. In general, all the fn... instructions are made
equivalent to f... instructions. If fwait is desired it must be
explicitly coded.

1.189 as.guide/i386-Notes

as 99 / 143

Notes

There is some trickery concerning the mul and imul instructions that
deserves mention. The 16-, 32-, and 64-bit expanding multiplies (base
opcode 0xf6; extension 4 for mul and 5 for imul) can be output only in
the one operand form. Thus, imul %ebx, %eax does not select the
expanding multiply; the expanding multiply would clobber the %edx
register, and this would confuse gcc output. Use imul %ebx to get the
64-bit product in %edx:%eax.

We have added a two operand form of imul when the first operand is
an immediate mode expression and the second operand is a register.
This is just a shorthand, so that, multiplying %eax by 69, for example,
can be done with imul $69, %eax rather than imul $69, %eax, %eax.

1.190 as.guide/Z8000-Dependent

Z8000 Dependent Features
========================

The Z8000 as supports both members of the Z8000 family: the
unsegmented Z8002, with 16 bit addresses, and the segmented Z8001 with
24 bit addresses.

When the assembler is in unsegmented mode (specified with the unsegm
directive), an address will take up one word (16 bit) sized register.
When the assembler is in segmented mode (specified with the segm
directive), a 24-bit address takes up a long (32 bit) register. See

Assembler Directives for the Z8000
, for a list of other Z8000 specific

assembler directives.

Z8000 Options
No special command-line options for Z8000

Z8000 Syntax
Assembler syntax for the Z8000

Z8000 Directives
Special directives for the Z8000

Z8000 Opcodes
Opcodes

as 100 / 143

1.191 as.guide/Z8000 Options

Options

as has no additional command-line options for the Zilog Z8000 family.

1.192 as.guide/Z8000 Syntax

Syntax

Z8000-Chars
Special Characters

Z8000-Regs
Register Names

Z8000-Addressing
Addressing Modes

1.193 as.guide/Z8000-Chars

Special Characters
..................

! is the line comment character.

You can use ; instead of a newline to separate statements.

1.194 as.guide/Z8000-Regs

Register Names
..............

The Z8000 has sixteen 16 bit registers, numbered 0 to 15. You can
refer to different sized groups of registers by register number, with
the prefix r for 16 bit registers, rr for 32 bit registers and rq for
64 bit registers. You can also refer to the contents of the first
eight (of the sixteen 16 bit registers) by bytes. They are named rnh
and rnl.

byte registers

as 101 / 143

r0l r0h r1h r1l r2h r2l r3h r3l
r4h r4l r5h r5l r6h r6l r7h r7l

word registers
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

long word registers
rr0 rr2 rr4 rr6 rr8 rr10 rr12 rr14

quad word registers
rq0 rq4 rq8 rq12

1.195 as.guide/Z8000-Addressing

Addressing Modes
................

as understands the following addressing modes for the Z8000:

rn
Register direct

@rn
Indirect register

addr
Direct: the 16 bit or 24 bit address (depending on whether the
assembler is in segmented or unsegmented mode) of the operand is
in the instruction.

address(rn)
Indexed: the 16 or 24 bit address is added to the 16 bit register
to produce the final address in memory of the operand.

rn(#imm)
Base Address: the 16 or 24 bit register is added to the 16 bit sign
extended immediate displacement to produce the final address in
memory of the operand.

rn(rm)
Base Index: the 16 or 24 bit register rn is added to the sign
extended 16 bit index register rm to produce the final address in
memory of the operand.

#xx
Immediate data xx.

1.196 as.guide/Z8000 Directives

Assembler Directives for the Z8000

The Z8000 port of as includes these additional assembler directives,

as 102 / 143

for compatibility with other Z8000 assemblers. As shown, these do not
begin with . (unlike the ordinary as directives).

segm
Generates code for the segmented Z8001.

unsegm
Generates code for the unsegmented Z8002.

name
Synonym for .file

global
Synonum for .global

wval
Synonym for .word

lval
Synonym for .long

bval
Synonym for .byte

sval
Assemble a string. sval expects one string literal, delimited by
single quotes. It assembles each byte of the string into
consecutive addresses. You can use the escape sequence %xx (where
xx represents a two-digit hexadecimal number) to represent the
character whose ASCII value is xx. Use this feature to describe
single quote and other characters that may not appear in string
literals as themselves. For example, the C statement
char *a = "he said \"it’s 50% off\""; is represented in Z8000
assembly language (shown with the assembler output in hex at the
left) as

68652073 sval ’he said %22it%27s 50%25 off%22%00’
61696420
22697427
73203530
25206F66
662200

rsect
synonym for .section

block
synonym for .space

even
synonym for .align 1

1.197 as.guide/Z8000 Opcodes

as 103 / 143

Opcodes

For detailed information on the Z8000 machine instruction set, see
‘Z8000 Technical Manual’.

The following table summarizes the opcodes and their arguments:

rs 16 bit source register
rd 16 bit destination register
rbs 8 bit source register
rbd 8 bit destination register
rrs 32 bit source register
rrd 32 bit destination register
rqs 64 bit source register
rqd 64 bit destination register
addr 16/24 bit address
imm immediate data

adc rd,rs clrb addr cpsir @rd,@rs,rr,cc
adcb rbd,rbs clrb addr(rd) cpsirb @rd,@rs,rr,cc
add rd,@rs clrb rbd dab rbd
add rd,addr com @rd dbjnz rbd,disp7
add rd,addr(rs) com addr dec @rd,imm4m1
add rd,imm16 com addr(rd) dec addr(rd),imm4m1
add rd,rs com rd dec addr,imm4m1
addb rbd,@rs comb @rd dec rd,imm4m1
addb rbd,addr comb addr decb @rd,imm4m1
addb rbd,addr(rs) comb addr(rd) decb addr(rd),imm4m1
addb rbd,imm8 comb rbd decb addr,imm4m1
addb rbd,rbs comflg flags decb rbd,imm4m1
addl rrd,@rs cp @rd,imm16 di i2
addl rrd,addr cp addr(rd),imm16 div rrd,@rs
addl rrd,addr(rs) cp addr,imm16 div rrd,addr
addl rrd,imm32 cp rd,@rs div rrd,addr(rs)
addl rrd,rrs cp rd,addr div rrd,imm16
and rd,@rs cp rd,addr(rs) div rrd,rs
and rd,addr cp rd,imm16 divl rqd,@rs
and rd,addr(rs) cp rd,rs divl rqd,addr
and rd,imm16 cpb @rd,imm8 divl rqd,addr(rs)
and rd,rs cpb addr(rd),imm8 divl rqd,imm32
andb rbd,@rs cpb addr,imm8 divl rqd,rrs
andb rbd,addr cpb rbd,@rs djnz rd,disp7
andb rbd,addr(rs) cpb rbd,addr ei i2
andb rbd,imm8 cpb rbd,addr(rs) ex rd,@rs
andb rbd,rbs cpb rbd,imm8 ex rd,addr
bit @rd,imm4 cpb rbd,rbs ex rd,addr(rs)
bit addr(rd),imm4 cpd rd,@rs,rr,cc ex rd,rs
bit addr,imm4 cpdb rbd,@rs,rr,cc exb rbd,@rs
bit rd,imm4 cpdr rd,@rs,rr,cc exb rbd,addr
bit rd,rs cpdrb rbd,@rs,rr,cc exb rbd,addr(rs)
bitb @rd,imm4 cpi rd,@rs,rr,cc exb rbd,rbs
bitb addr(rd),imm4 cpib rbd,@rs,rr,cc ext0e imm8
bitb addr,imm4 cpir rd,@rs,rr,cc ext0f imm8
bitb rbd,imm4 cpirb rbd,@rs,rr,cc ext8e imm8
bitb rbd,rs cpl rrd,@rs ext8f imm8

as 104 / 143

bpt cpl rrd,addr exts rrd
call @rd cpl rrd,addr(rs) extsb rd
call addr cpl rrd,imm32 extsl rqd
call addr(rd) cpl rrd,rrs halt
calr disp12 cpsd @rd,@rs,rr,cc in rd,@rs
clr @rd cpsdb @rd,@rs,rr,cc in rd,imm16
clr addr cpsdr @rd,@rs,rr,cc inb rbd,@rs
clr addr(rd) cpsdrb @rd,@rs,rr,cc inb rbd,imm16
clr rd cpsi @rd,@rs,rr,cc inc @rd,imm4m1
clrb @rd cpsib @rd,@rs,rr,cc inc addr(rd),imm4m1
inc addr,imm4m1 ldb rbd,rs(rx) mult rrd,addr(rs)
inc rd,imm4m1 ldb rd(imm16),rbs mult rrd,imm16
incb @rd,imm4m1 ldb rd(rx),rbs mult rrd,rs
incb addr(rd),imm4m1 ldctl ctrl,rs multl rqd,@rs
incb addr,imm4m1 ldctl rd,ctrl multl rqd,addr
incb rbd,imm4m1 ldd @rs,@rd,rr multl rqd,addr(rs)
ind @rd,@rs,ra lddb @rs,@rd,rr multl rqd,imm32
indb @rd,@rs,rba lddr @rs,@rd,rr multl rqd,rrs
inib @rd,@rs,ra lddrb @rs,@rd,rr neg @rd
inibr @rd,@rs,ra ldi @rd,@rs,rr neg addr
iret ldib @rd,@rs,rr neg addr(rd)
jp cc,@rd ldir @rd,@rs,rr neg rd
jp cc,addr ldirb @rd,@rs,rr negb @rd
jp cc,addr(rd) ldk rd,imm4 negb addr
jr cc,disp8 ldl @rd,rrs negb addr(rd)
ld @rd,imm16 ldl addr(rd),rrs negb rbd
ld @rd,rs ldl addr,rrs nop
ld addr(rd),imm16 ldl rd(imm16),rrs or rd,@rs
ld addr(rd),rs ldl rd(rx),rrs or rd,addr
ld addr,imm16 ldl rrd,@rs or rd,addr(rs)
ld addr,rs ldl rrd,addr or rd,imm16
ld rd(imm16),rs ldl rrd,addr(rs) or rd,rs
ld rd(rx),rs ldl rrd,imm32 orb rbd,@rs
ld rd,@rs ldl rrd,rrs orb rbd,addr
ld rd,addr ldl rrd,rs(imm16) orb rbd,addr(rs)
ld rd,addr(rs) ldl rrd,rs(rx) orb rbd,imm8
ld rd,imm16 ldm @rd,rs,n orb rbd,rbs
ld rd,rs ldm addr(rd),rs,n out @rd,rs
ld rd,rs(imm16) ldm addr,rs,n out imm16,rs
ld rd,rs(rx) ldm rd,@rs,n outb @rd,rbs
lda rd,addr ldm rd,addr(rs),n outb imm16,rbs
lda rd,addr(rs) ldm rd,addr,n outd @rd,@rs,ra
lda rd,rs(imm16) ldps @rs outdb @rd,@rs,rba
lda rd,rs(rx) ldps addr outib @rd,@rs,ra
ldar rd,disp16 ldps addr(rs) outibr @rd,@rs,ra
ldb @rd,imm8 ldr disp16,rs pop @rd,@rs
ldb @rd,rbs ldr rd,disp16 pop addr(rd),@rs
ldb addr(rd),imm8 ldrb disp16,rbs pop addr,@rs
ldb addr(rd),rbs ldrb rbd,disp16 pop rd,@rs
ldb addr,imm8 ldrl disp16,rrs popl @rd,@rs
ldb addr,rbs ldrl rrd,disp16 popl addr(rd),@rs
ldb rbd,@rs mbit popl addr,@rs
ldb rbd,addr mreq rd popl rrd,@rs
ldb rbd,addr(rs) mres push @rd,@rs
ldb rbd,imm8 mset push @rd,addr
ldb rbd,rbs mult rrd,@rs push @rd,addr(rs)
ldb rbd,rs(imm16) mult rrd,addr push @rd,imm16

as 105 / 143

push @rd,rs set addr,imm4 subl rrd,imm32
pushl @rd,@rs set rd,imm4 subl rrd,rrs
pushl @rd,addr set rd,rs tcc cc,rd
pushl @rd,addr(rs) setb @rd,imm4 tccb cc,rbd
pushl @rd,rrs setb addr(rd),imm4 test @rd
res @rd,imm4 setb addr,imm4 test addr
res addr(rd),imm4 setb rbd,imm4 test addr(rd)
res addr,imm4 setb rbd,rs test rd
res rd,imm4 setflg imm4 testb @rd
res rd,rs sinb rbd,imm16 testb addr
resb @rd,imm4 sinb rd,imm16 testb addr(rd)
resb addr(rd),imm4 sind @rd,@rs,ra testb rbd
resb addr,imm4 sindb @rd,@rs,rba testl @rd
resb rbd,imm4 sinib @rd,@rs,ra testl addr
resb rbd,rs sinibr @rd,@rs,ra testl addr(rd)
resflg imm4 sla rd,imm8 testl rrd
ret cc slab rbd,imm8 trdb @rd,@rs,rba
rl rd,imm1or2 slal rrd,imm8 trdrb @rd,@rs,rba
rlb rbd,imm1or2 sll rd,imm8 trib @rd,@rs,rbr
rlc rd,imm1or2 sllb rbd,imm8 trirb @rd,@rs,rbr
rlcb rbd,imm1or2 slll rrd,imm8 trtdrb @ra,@rb,rbr
rldb rbb,rba sout imm16,rs trtib @ra,@rb,rr
rr rd,imm1or2 soutb imm16,rbs trtirb @ra,@rb,rbr
rrb rbd,imm1or2 soutd @rd,@rs,ra trtrb @ra,@rb,rbr
rrc rd,imm1or2 soutdb @rd,@rs,rba tset @rd
rrcb rbd,imm1or2 soutib @rd,@rs,ra tset addr
rrdb rbb,rba soutibr @rd,@rs,ra tset addr(rd)
rsvd36 sra rd,imm8 tset rd
rsvd38 srab rbd,imm8 tsetb @rd
rsvd78 sral rrd,imm8 tsetb addr
rsvd7e srl rd,imm8 tsetb addr(rd)
rsvd9d srlb rbd,imm8 tsetb rbd
rsvd9f srll rrd,imm8 xor rd,@rs
rsvdb9 sub rd,@rs xor rd,addr
rsvdbf sub rd,addr xor rd,addr(rs)
sbc rd,rs sub rd,addr(rs) xor rd,imm16
sbcb rbd,rbs sub rd,imm16 xor rd,rs
sc imm8 sub rd,rs xorb rbd,@rs
sda rd,rs subb rbd,@rs xorb rbd,addr
sdab rbd,rs subb rbd,addr xorb rbd,addr(rs)
sdal rrd,rs subb rbd,addr(rs) xorb rbd,imm8
sdl rd,rs subb rbd,imm8 xorb rbd,rbs
sdlb rbd,rs subb rbd,rbs xorb rbd,rbs
sdll rrd,rs subl rrd,@rs
set @rd,imm4 subl rrd,addr
set addr(rd),imm4 subl rrd,addr(rs)

1.198 as.guide/Acknowledgements

Acknowledgements

If you’ve contributed to as and your name isn’t listed here, it is
not meant as a slight. We just don’t know about it. Send mail to the

as 106 / 143

maintainer, and we’ll correct the situation. Currently (June 1993), the
maintainer is Ken Raeburn (email address raeburn@cygnus.com).

Dean Elsner wrote the original GNU assembler for the VAX.(1)

Jay Fenlason maintained GAS for a while, adding support for
gdb-specific debug information and the 68k series machines, most of the
preprocessing pass, and extensive changes in messages.c, input-file.c,
write.c.

K. Richard Pixley maintained GAS for a while, adding various
enhancements and many bug fixes, including merging support for several
processors, breaking GAS up to handle multiple object file format
backends (including heavy rewrite, testing, an integration of the coff
and b.out backends), adding configuration including heavy testing and
verification of cross assemblers and file splits and renaming,
converted GAS to strictly ansi C including full prototypes, added
support for m680[34]0 & cpu32, considerable work on i960 including a
COFF port (including considerable amounts of reverse engineering), a
SPARC opcode file rewrite, DECstation, rs6000, and hp300hpux host
ports, updated "know" assertions and made them work, much other
reorganization, cleanup, and lint.

Ken Raeburn wrote the high-level BFD interface code to replace most
of the code in format-specific I/O modules.

The original VMS support was contributed by David L. Kashtan. Eric
Youngdale has done much work with it since.

The Intel 80386 machine description was written by Eliot Dresselhaus.

Minh Tran-Le at IntelliCorp contributed some AIX 386 support.

The Motorola 88k machine description was contributed by Devon Bowen
of Buffalo University and Torbjorn Granlund of the Swedish Institute of
Computer Science.

Keith Knowles at the Open Software Foundation wrote the original
MIPS back end (tc-mips.c, tc-mips.h), and contributed Rose format
support (which hasn’t been merged in yet). Ralph Campbell worked with
the MIPS code to support a.out format.

Support for the Zilog Z8k and Hitachi H8/300 and H8/500 processors
(tc-z8k, tc-h8300, tc-h8500), and IEEE 695 object file format
(obj-ieee), was written by Steve Chamberlain of Cygnus Support. Steve
also modified the COFF back end to use BFD for some low-level
operations, for use with the H8/300 and AMD 29k targets.

John Gilmore built the AMD 29000 support, added .include support, and
simplified the configuration of which versions accept which pseudo-ops.
He updated the 68k machine description so that Motorola’s opcodes
always produced fixed-size instructions (e.g. jsr), while synthetic
instructions remained shrinkable (jbsr). John fixed many bugs,
including true tested cross-compilation support, and one bug in
relaxation that took a week and required the apocryphal one-bit fix.

Ian Lance Taylor of Cygnus Support merged the Motorola and MIT

as 107 / 143

syntaxes for the 68k, completed support for some COFF targets (68k,
i386 SVR3, and SCO Unix), and made a few other minor patches.

Steve Chamberlain made as able to generate listings.

Support for the HP9000/300 was contributed by Hewlett-Packard.

Support for ELF format files has been worked on by Mark Eichin of
Cygnus Support (original, incomplete implementation for SPARC), Pete
Hoogenboom and Jeff Law at the University of Utah (HPPA mainly),
Michael Meissner of the Open Software Foundation (i386 mainly), and Ken
Raeburn of Cygnus Support (sparc, and some initial 64-bit support).

Several engineers at Cygnus Support have also provided many small
bug fixes and configuration enhancements.

Many others have contributed large or small bugfixes and
enhancements. If you’ve contributed significant work and are not
mentioned on this list, and want to be, let us know. Some of the
history has been lost; we aren’t intentionally leaving anyone out.

---------- Footnotes ----------

(1) Any more details?

1.199 as.guide/Copying

1.200 as.guide/Index

Index

#
Comments

#APP
Pre-processing

#NO_APP
Pre-processing

-
Command Line

-a
a

-ad
a

-ah
a

as 108 / 143

-al
a

-an
a

-as
a

-Asparclite
Sparc-Opts

-Av6
Sparc-Opts

-Av8
Sparc-Opts

-D
D

-f
f

-I path
I

-K
K

-L
L

-o
o

-R
R

-v
v

-version
v

-W
W

.o
Object

29K support
AMD29K-Dependent

$ in symbol names
SH-Chars

as 109 / 143

$ in symbol names
H8-500-Chars

-+ option, VAX/VMS
Vax-Opts

-A options, i960
Options-i960

-b option, i960
Options-i960

-D, ignored on VAX
Vax-Opts

-d, VAX option
Vax-Opts

-h option, VAX/VMS
Vax-Opts

-J, ignored on VAX
Vax-Opts

-l option, M680x0
M68K-Opts

-m68000 and related options
M68K-Opts

-norelax option, i960
Options-i960

-S, ignored on VAX
Vax-Opts

-T, ignored on VAX
Vax-Opts

-t, ignored on VAX
Vax-Opts

-V, redundant on VAX
Vax-Opts

. (symbol)
Dot

: (label)
Statements

as version
v

a.out symbol attributes
a.out Symbols

as 110 / 143

ABORT directive
ABORT

abort directive
Abort

align directive
Align

app-file directive
App-File

ascii directive
Ascii

asciz directive
Asciz

block directive, AMD 29K
AMD29K Directives

bss directive, i960
Directives-i960

byte directive
Byte

callj, i960 pseudo-opcode
callj-i960

common directive, SPARC
Sparc-Directives

comm directive
Comm

cputype directive, AMD 29K
AMD29K Directives

data1 directive, M680x0
M68K-Directives

data2 directive, M680x0
M68K-Directives

data directive
Data

def directive
Def

desc directive
Desc

dfloat directive, VAX
VAX-directives

as 111 / 143

dim directive
Dim

double directive
Double

double directive, i386
i386-Float

double directive, M680x0
M68K-Float

double directive, VAX
VAX-float

eject directive
Eject

else directive
Else

endef directive
Endef

endif directive
Endif

equ directive
Equ

even directive, M680x0
M68K-Directives

extended directive, i960
Directives-i960

extern directive
Extern

ffloat directive, VAX
VAX-directives

file directive
File

file directive, AMD 29K
AMD29K Directives

fill directive
Fill

float directive
Float

float directive, i386
i386-Float

as 112 / 143

float directive, M680x0
M68K-Float

float directive, VAX
VAX-float

fwait instruction, i386
i386-Float

gbr960, i960 postprocessor
Options-i960

gfloat directive, VAX
VAX-directives

global directive
Global

half directive, SPARC
Sparc-Directives

hfloat directive, VAX
VAX-directives

hword directive
hword

ident directive
Ident

ifdef directive
If

ifndef directive
If

ifnotdef directive
If

if directive
If

imul instruction, i386
i386-Notes

include directive
Include

include directive search path
I

int directive
Int

int directive, H8/300
H8-300 Directives

as 113 / 143

int directive, H8/500
H8-500 Directives

int directive, i386
i386-Float

int directive, SH
SH Directives

lcomm directive
Lcomm

leafproc directive, i960
Directives-i960

lflags directive (ignored)
Lflags

line directive
Line

line directive, AMD 29K
AMD29K Directives

list directive
List

ln directive
Ln

long directive
Long

long directive, i386
i386-Float

mul instruction, i386
i386-Notes

nolist directive
Nolist

octa directive
Octa

org directive
Org

proc directive, SPARC
Sparc-Directives

psize directive
Psize

quad directive
Quad

as 114 / 143

quad directive, i386
i386-Float

reserve directive, SPARC
Sparc-Directives

sbttl directive
Sbttl

scl directive
Scl

section directive
Section

sect directive, AMD 29K
AMD29K Directives

seg directive, SPARC
Sparc-Directives

set directive
Set

short directive
Short

single directive
Single

single directive, i386
i386-Float

size directive
Size

skip directive, M680x0
M68K-Directives

skip directive, SPARC
Sparc-Directives

space directive
Space

stabx directives
Stab

stabd directive
Stab

stabn directive
Stab

stabs directive
Stab

as 115 / 143

sysproc directive, i960
Directives-i960

tag directive
Tag

text directive
Text

tfloat directive, i386
i386-Float

title directive
Title

type directive
Type

use directive, AMD 29K
AMD29K Directives

val directive
Val

word directive
Word

word directive, H8/300
H8-300 Directives

word directive, H8/500
H8-500 Directives

word directive, i386
i386-Float

word directive, SH
SH Directives

word directive, SPARC
Sparc-Directives

\ Strings

\ddd (octal character code)
Strings

\b (backspace character)
Strings

\f (formfeed character)
Strings

\n (newline character)
Strings

\r (carriage return character)

as 116 / 143

Strings

\t (tab)
Strings

\\ (\ character)
Strings

MIT
M68K-Syntax

a.out
Object

absolute section
Ld Sections

addition, permitted arguments
Infix Ops

addresses
Expressions

addresses, format of
Secs Background

addressing modes, H8/300
H8-300-Addressing

addressing modes, H8/500
H8-500-Addressing

addressing modes, M680x0
M68K-Moto-Syntax

addressing modes, M680x0
M68K-Syntax

addressing modes, SH
SH-Addressing

addressing modes, Z8000
Z8000-Addressing

advancing location counter
Org

altered difference tables
Word

alternate syntax for the 680x0
M68K-Moto-Syntax

AMD 29K floating point (IEEE)
AMD29K Floating Point

AMD 29K identifiers

as 117 / 143

AMD29K-Chars

AMD 29K line comment character
AMD29K-Chars

AMD 29K line separator
AMD29K-Chars

AMD 29K machine directives
AMD29K Directives

AMD 29K opcodes
AMD29K Opcodes

AMD 29K options (none)
AMD29K Options

AMD 29K protected registers
AMD29K-Regs

AMD 29K register names
AMD29K-Regs

AMD 29K special purpose registers
AMD29K-Regs

AMD 29K statement separator
AMD29K-Chars

AMD 29K support
AMD29K-Dependent

architecture options, i960
Options-i960

architecture options, M680x0
M68K-Opts

architectures, SPARC
Sparc-Opts

arguments for addition
Infix Ops

arguments for subtraction
Infix Ops

arguments in expressions
Arguments

arithmetic functions
Operators

arithmetic operands
Arguments

assembler internal logic error

as 118 / 143

As Sections

assembler, and linker
Secs Background

assembly listings, enabling
a

assigning values to symbols
Equ

assigning values to symbols
Setting Symbols

attributes, symbol
Symbol Attributes

auxiliary attributes, COFF symbols
COFF Symbols

auxiliary symbol information, COFF
Dim

Av7
Sparc-Opts

backslash (\\)
Strings

backspace (\b)
Strings

bignums
Bignums

binary integers
Integers

bitfields, not supported on VAX
VAX-no

block
Z8000 Directives

branch improvement, M680x0
M68K-Branch

branch improvement, VAX
VAX-branch

branch recording, i960
Options-i960

branch statistics table, i960
Options-i960

bss section

as 119 / 143

bss

bss section
Ld Sections

bus lock prefixes, i386
i386-prefixes

bval
Z8000 Directives

call instructions, i386
i386-Opcodes

carriage return (\r)
Strings

character constants
Characters

character escape codes
Strings

character, single
Chars

characters used in symbols
Symbol Intro

COFF auxiliary symbol information
Dim

COFF named section
Section

COFF structure debugging
Tag

COFF symbol attributes
COFF Symbols

COFF symbol descriptor
Desc

COFF symbol storage class
Scl

COFF symbol type
Type

COFF symbols, debugging
Def

COFF value attribute
Val

command line conventions

as 120 / 143

Command Line

command-line options ignored, VAX
Vax-Opts

comments
Comments

comments, M680x0
M68K-Chars

comments, removed by preprocessor
Pre-processing

common variable storage
bss

compare and jump expansions, i960
Compare-and-branch-i960

compare/branch instructions, i960
Compare-and-branch-i960

conditional assembly
If

constant, single character
Chars

constants
Constants

constants, bignum
Bignums

constants, character
Characters

constants, converted by preprocessor
Pre-processing

constants, floating point
Flonums

constants, integer
Integers

constants, number
Numbers

constants, string
Strings

continuing statements
Statements

conversion instructions, i386

as 121 / 143

i386-Opcodes

coprocessor wait, i386
i386-prefixes

current address
Dot

current address, advancing
Org

data and text sections, joining
R

data section
Ld Sections

debuggers, and symbol order
Symbols

debugging COFF symbols
Def

decimal integers
Integers

deprecated directives
Deprecated

descriptor, of a.out symbol
Symbol Desc

difference tables altered
Word

difference tables, warning
K

directives and instructions
Statements

directives, M680x0
M68K-Directives

directives, machine independent
Pseudo Ops

directives, Z8000
Z8000 Directives

displacement sizing character, VAX
VAX-operands

dot (symbol)
Dot

doublequote (\ Strings

as 122 / 143

eight-byte integer
Quad

empty expressions
Empty Exprs

EOF, newline must precede
Statements

error messsages
Errors

escape codes, character
Strings

even
Z8000 Directives

expr (internal section)
As Sections

expression arguments
Arguments

expressions
Expressions

expressions, empty
Empty Exprs

expressions, integer
Integer Exprs

faster processing (-f)
f

file name, logical
App-File

file name, logical
File

files, including
Include

files, input
Input Files

filling memory
Space

floating point numbers
Flonums

floating point numbers (double)
Double

as 123 / 143

floating point numbers (single)
Single

floating point numbers (single)
Float

floating point, AMD 29K (IEEE)
AMD29K Floating Point

floating point, H8/300 (IEEE)
H8-300 Floating Point

floating point, H8/500 (IEEE)
H8-500 Floating Point

floating point, i386
i386-Float

floating point, i960 (IEEE)
Floating Point-i960

floating point, M680x0
M68K-Float

floating point, SH (IEEE)
SH Floating Point

floating point, SPARC (IEEE)
Sparc-Float

floating point, VAX
VAX-float

flonums
Flonums

format of error messages
Errors

format of warning messages
Errors

formfeed (\f)
Strings

functions, in expressions
Operators

global
Z8000 Directives

grouping data
Sub-Sections

H8/300 addressing modes
H8-300-Addressing

as 124 / 143

H8/300 floating point (IEEE)
H8-300 Floating Point

H8/300 line comment character
H8-300-Chars

H8/300 line separator
H8-300-Chars

H8/300 machine directives (none)
H8-300 Directives

H8/300 opcode summary
H8-300 Opcodes

H8/300 options (none)
H8-300 Options

H8/300 registers
H8-300-Regs

H8/300 size suffixes
H8-300 Opcodes

H8/300 support
H8-300-Dependent

H8/300H, assembling for
H8-300 Directives

H8/500 addressing modes
H8-500-Addressing

H8/500 floating point (IEEE)
H8-500 Floating Point

H8/500 line comment character
H8-500-Chars

H8/500 line separator
H8-500-Chars

H8/500 machine directives (none)
H8-500 Directives

H8/500 opcode summary
H8-500 Opcodes

H8/500 options (none)
H8-500 Options

H8/500 registers
H8-500-Regs

H8/500 support
H8-500-Dependent

as 125 / 143

hexadecimal integers
Integers

i386 fwait instruction
i386-Float

i386 mul, imul instructions
i386-Notes

i386 conversion instructions
i386-Opcodes

i386 floating point
i386-Float

i386 immediate operands
i386-Syntax

i386 jump optimization
i386-jumps

i386 jump, call, return
i386-Syntax

i386 jump/call operands
i386-Syntax

i386 memory references
i386-Memory

i386 opcode naming
i386-Opcodes

i386 opcode prefixes
i386-prefixes

i386 options (none)
i386-Options

i386 register operands
i386-Syntax

i386 registers
i386-Regs

i386 sections
i386-Syntax

i386 size suffixes
i386-Syntax

i386 source, destination operands
i386-Syntax

i386 support
i386-Dependent

as 126 / 143

i386 syntax compatibility
i386-Syntax

i80306 support
i386-Dependent

i960 callj pseudo-opcode
callj-i960

i960 architecture options
Options-i960

i960 branch recording
Options-i960

i960 compare and jump expansions
Compare-and-branch-i960

i960 compare/branch instructions
Compare-and-branch-i960

i960 floating point (IEEE)
Floating Point-i960

i960 machine directives
Directives-i960

i960 opcodes
Opcodes for i960

i960 options
Options-i960

i960 support
i960-Dependent

identifiers, AMD 29K
AMD29K-Chars

immediate character, M680x0
M68K-Chars

immediate character, VAX
VAX-operands

immediate operands, i386
i386-Syntax

indirect character, VAX
VAX-operands

infix operators
Infix Ops

inhibiting interrupts, i386
i386-prefixes

as 127 / 143

input
Input Files

input file linenumbers
Input Files

instruction set, M680x0
M68K-opcodes

instruction summary, H8/300
H8-300 Opcodes

instruction summary, H8/500
H8-500 Opcodes

instruction summary, SH
SH Opcodes

instruction summary, Z8000
Z8000 Opcodes

instructions and directives
Statements

integer expressions
Integer Exprs

integer, 16-byte
Octa

integer, 8-byte
Quad

integers
Integers

integers, 16-bit
hword

integers, 32-bit
Int

integers, binary
Integers

integers, decimal
Integers

integers, hexadecimal
Integers

integers, octal
Integers

integers, one byte
Byte

as 128 / 143

internal as sections
As Sections

invocation summary
Overview

joining text and data sections
R

jump instructions, i386
i386-Opcodes

jump optimization, i386
i386-jumps

jump/call operands, i386
i386-Syntax

label (:)
Statements

labels
Labels

ld
Object

length of symbols
Symbol Intro

line comment character
Comments

line comment character, AMD 29K
AMD29K-Chars

line comment character, H8/300
H8-300-Chars

line comment character, H8/500
H8-500-Chars

line comment character, M680x0
M68K-Chars

line comment character, SH
SH-Chars

line comment character, Z8000
Z8000-Chars

line numbers, in input files
Input Files

line numbers, in warnings/errors
Errors

as 129 / 143

line separator character
Statements

line separator, AMD 29K
AMD29K-Chars

line separator, H8/300
H8-300-Chars

line separator, H8/500
H8-500-Chars

line separator, SH
SH-Chars

line separator, Z8000
Z8000-Chars

lines starting with #
Comments

linker
Object

linker, and assembler
Secs Background

listing control, turning off
Nolist

listing control, turning on
List

listing control: new page
Eject

listing control: paper size
Psize

listing control: subtitle
Sbttl

listing control: title line
Title

listings, enabling
a

local common symbols
Lcomm

local labels, retaining in output
L

local symbol names
Symbol Names

as 130 / 143

location counter
Dot

location counter, advancing
Org

logical file name
File

logical file name
App-File

logical line number
Line

logical line numbers
Comments

lval
Z8000 Directives

M680x0 addressing modes
M68K-Moto-Syntax

M680x0 addressing modes
M68K-Syntax

M680x0 architecture options
M68K-Opts

M680x0 branch improvement
M68K-Branch

M680x0 directives
M68K-Directives

M680x0 floating point
M68K-Float

M680x0 immediate character
M68K-Chars

M680x0 line comment character
M68K-Chars

M680x0 opcodes
M68K-opcodes

M680x0 options
M68K-Opts

M680x0 pseudo-opcodes
M68K-Branch

M680x0 size modifiers
M68K-Syntax

as 131 / 143

M680x0 support
M68K-Dependent

M680x0 syntax
M68K-Moto-Syntax

M680x0 syntax
M68K-Syntax

machine dependencies
Machine Dependencies

machine directives, AMD 29K
AMD29K Directives

machine directives, H8/300 (none)
H8-300 Directives

machine directives, H8/500 (none)
H8-500 Directives

machine directives, i960
Directives-i960

machine directives, SH (none)
SH Directives

machine directives, SPARC
Sparc-Directives

machine directives, VAX
VAX-directives

machine independent directives
Pseudo Ops

machine instructions (not covered)
Manual

machine-independent syntax
Syntax

manual, structure and purpose
Manual

memory references, i386
i386-Memory

merging text and data sections
R

messages from as
Errors

minus, permitted arguments
Infix Ops

as 132 / 143

mnemonics for opcodes, VAX
VAX-opcodes

mnemonics, H8/300
H8-300 Opcodes

mnemonics, H8/500
H8-500 Opcodes

mnemonics, SH
SH Opcodes

mnemonics, Z8000
Z8000 Opcodes

Motorola syntax for the 680x0
M68K-Moto-Syntax

multi-line statements
Statements

name
Z8000 Directives

named section (COFF)
Section

named sections
Ld Sections

names, symbol
Symbol Names

naming object file
o

new page, in listings
Eject

newline (\n)
Strings

newline, required at file end
Statements

null-terminated strings
Asciz

number constants
Numbers

numbered subsections
Sub-Sections

numbers, 16-bit
hword

as 133 / 143

numeric values
Expressions

object file
Object

object file format
Object Formats

object file name
o

obsolescent directives
Deprecated

octal character code (\ddd)
Strings

octal integers
Integers

opcode mnemonics, VAX
VAX-opcodes

opcode naming, i386
i386-Opcodes

opcode prefixes, i386
i386-prefixes

opcode suffixes, i386
i386-Syntax

opcode summary, H8/300
H8-300 Opcodes

opcode summary, H8/500
H8-500 Opcodes

opcode summary, SH
SH Opcodes

opcode summary, Z8000
Z8000 Opcodes

opcodes for AMD 29K
AMD29K Opcodes

opcodes, i960
Opcodes for i960

opcodes, M680x0
M68K-opcodes

operand delimiters, i386
i386-Syntax

as 134 / 143

operand notation, VAX
VAX-operands

operands in expressions
Arguments

operator precedence
Infix Ops

operators, in expressions
Operators

operators, permitted arguments
Infix Ops

option summary
Overview

options for AMD29K (none)
AMD29K Options

options for i386 (none)
i386-Options

options for SPARC
Sparc-Opts

options for VAX/VMS
Vax-Opts

options, all versions of as
Invoking

options, command line
Command Line

options, H8/300 (none)
H8-300 Options

options, H8/500 (none)
H8-500 Options

options, i960
Options-i960

options, M680x0
M68K-Opts

options, SH (none)
SH Options

options, Z8000
Z8000 Options

other attribute, of a.out symbol
Symbol Other

as 135 / 143

output file
Object

padding the location counter
Align

page, in listings
Eject

paper size, for listings
Psize

paths for .include
I

patterns, writing in memory
Fill

plus, permitted arguments
Infix Ops

precedence of operators
Infix Ops

precision, floating point
Flonums

prefix operators
Prefix Ops

prefixes, i386
i386-prefixes

preprocessing
Pre-processing

preprocessing, turning on and off
Pre-processing

primary attributes, COFF symbols
COFF Symbols

protected registers, AMD 29K
AMD29K-Regs

pseudo-opcodes, M680x0
M68K-Branch

pseudo-ops for branch, VAX
VAX-branch

pseudo-ops, machine independent
Pseudo Ops

purpose of GNU as
GNU Assembler

as 136 / 143

register names, AMD 29K
AMD29K-Regs

register names, H8/300
H8-300-Regs

register names, VAX
VAX-operands

register operands, i386
i386-Syntax

registers, H8/500
H8-500-Regs

registers, i386
i386-Regs

registers, SH
SH-Regs

registers, Z8000
Z8000-Regs

relocation
Sections

relocation example
Ld Sections

repeat prefixes, i386
i386-prefixes

return instructions, i386
i386-Syntax

rsect
Z8000 Directives

search path for .include
I

section override prefixes, i386
i386-prefixes

section-relative addressing
Secs Background

sections
Sections

sections in messages, internal
As Sections

sections, i386
i386-Syntax

as 137 / 143

sections, named
Ld Sections

segm
Z8000 Directives

SH addressing modes
SH-Addressing

SH floating point (IEEE)
SH Floating Point

SH line comment character
SH-Chars

SH line separator
SH-Chars

SH machine directives (none)
SH Directives

SH opcode summary
SH Opcodes

SH options (none)
SH Options

SH registers
SH-Regs

SH support
SH-Dependent

single character constant
Chars

sixteen bit integers
hword

sixteen byte integer
Octa

size modifiers, M680x0
M68K-Syntax

size prefixes, i386
i386-prefixes

size suffixes, H8/300
H8-300 Opcodes

sizes operands, i386
i386-Syntax

source program
Input Files

as 138 / 143

source, destination operands; i386
i386-Syntax

SPARC architectures
Sparc-Opts

SPARC floating point (IEEE)
Sparc-Float

SPARC machine directives
Sparc-Directives

SPARC options
Sparc-Opts

SPARC support
Sparc-Dependent

special characters, M680x0
M68K-Chars

special purpose registers, AMD 29K
AMD29K-Regs

standard as sections
Secs Background

standard input, as input file
Command Line

statement on multiple lines
Statements

statement separator character
Statements

statement separator, AMD 29K
AMD29K-Chars

statement separator, H8/300
H8-300-Chars

statement separator, H8/500
H8-500-Chars

statement separator, SH
SH-Chars

statement separator, Z8000
Z8000-Chars

statements, structure of
Statements

stopping the assembly
Abort

as 139 / 143

string constants
Strings

string literals
Ascii

structure debugging, COFF
Tag

subexpressions
Arguments

subtitles for listings
Sbttl

subtraction, permitted arguments
Infix Ops

summary of options
Overview

supporting files, including
Include

suppressing warnings
W

sval
Z8000 Directives

symbol attributes
Symbol Attributes

symbol attributes, a.out
a.out Symbols

symbol attributes, COFF
COFF Symbols

symbol descriptor, COFF
Desc

symbol names
Symbol Names

symbol names, $ in
SH-Chars

symbol names, $ in
H8-500-Chars

symbol names, local
Symbol Names

symbol names, temporary
Symbol Names

as 140 / 143

symbol storage class (COFF)
Scl

symbol type
Symbol Type

symbol type, COFF
Type

symbol value
Symbol Value

symbol value, setting
Set

symbol values, assigning
Setting Symbols

symbol, common
Comm

symbol, making visible to linker
Global

symbolic debuggers, information for
Stab

symbols
Symbols

symbols with lowercase, VAX/VMS
Vax-Opts

symbols, assigning values to
Equ

symbols, local common
Lcomm

syntax compatibility, i386
i386-Syntax

syntax, M680x0
M68K-Syntax

syntax, M680x0
M68K-Moto-Syntax

syntax, machine-independent
Syntax

tab (\t)
Strings

temporary symbol names
Symbol Names

as 141 / 143

text and data sections, joining
R

text section
Ld Sections

trusted compiler
f

turning preprocessing on and off
Pre-processing

type of a symbol
Symbol Type

undefined section
Ld Sections

unsegm
Z8000 Directives

value attribute, COFF
Val

value of a symbol
Symbol Value

VAX bitfields not supported
VAX-no

VAX branch improvement
VAX-branch

VAX command-line options ignored
Vax-Opts

VAX displacement sizing character
VAX-operands

VAX floating point
VAX-float

VAX immediate character
VAX-operands

VAX indirect character
VAX-operands

VAX machine directives
VAX-directives

VAX opcode mnemonics
VAX-opcodes

VAX operand notation
VAX-operands

as 142 / 143

VAX register names
VAX-operands

VAX support
Vax-Dependent

Vax-11 C compatibility
Vax-Opts

VAX/VMS options
Vax-Opts

version of as
v

VMS (VAX) options
Vax-Opts

warning for altered difference tables
K

warning messages
Errors

warnings, suppressing
W

whitespace
Whitespace

whitespace, removed by preprocessor
Pre-processing

wide floating point directives, VAX
VAX-directives

writing patterns in memory
Fill

wval
Z8000 Directives

Z800 addressing modes
Z8000-Addressing

Z8000 directives
Z8000 Directives

Z8000 line comment character
Z8000-Chars

Z8000 line separator
Z8000-Chars

Z8000 opcode summary
Z8000 Opcodes

as 143 / 143

Z8000 options
Z8000 Options

Z8000 registers
Z8000-Regs

Z8000 support
Z8000-Dependent

zero-terminated strings
Asciz

	as
	as.guide
	as.guide/Overview
	as.guide/Manual
	as.guide/GNU Assembler
	as.guide/Object Formats
	as.guide/Command Line
	as.guide/Input Files
	as.guide/Object
	as.guide/Errors
	as.guide/Invoking
	as.guide/a
	as.guide/D
	as.guide/f
	as.guide/I
	as.guide/K
	as.guide/L
	as.guide/o
	as.guide/R
	as.guide/v
	as.guide/W
	as.guide/Syntax
	as.guide/Pre-processing
	as.guide/Whitespace
	as.guide/Comments
	as.guide/Symbol Intro
	as.guide/Statements
	as.guide/Constants
	as.guide/Characters
	as.guide/Strings
	as.guide/Chars
	as.guide/Numbers
	as.guide/Integers
	as.guide/Bignums
	as.guide/Flonums
	as.guide/Sections
	as.guide/Secs Background
	as.guide/Ld Sections
	as.guide/As Sections
	as.guide/Sub-Sections
	as.guide/bss
	as.guide/Symbols
	as.guide/Labels
	as.guide/Setting Symbols
	as.guide/Symbol Names
	as.guide/Dot
	as.guide/Symbol Attributes
	as.guide/Symbol Value
	as.guide/Symbol Type
	as.guide/a.out Symbols
	as.guide/Symbol Desc
	as.guide/Symbol Other
	as.guide/COFF Symbols
	as.guide/Expressions
	as.guide/Empty Exprs
	as.guide/Integer Exprs
	as.guide/Arguments
	as.guide/Operators
	as.guide/Prefix Ops
	as.guide/Infix Ops
	as.guide/Pseudo Ops
	as.guide/Abort
	as.guide/ABORT
	as.guide/Align
	as.guide/App-File
	as.guide/Ascii
	as.guide/Asciz
	as.guide/Byte
	as.guide/Comm
	as.guide/Data
	as.guide/Def
	as.guide/Desc
	as.guide/Dim
	as.guide/Double
	as.guide/Eject
	as.guide/Else
	as.guide/Endef
	as.guide/Endif
	as.guide/Equ
	as.guide/Extern
	as.guide/File
	as.guide/Fill
	as.guide/Float
	as.guide/Global
	as.guide/hword
	as.guide/Ident
	as.guide/If
	as.guide/Include
	as.guide/Int
	as.guide/Lcomm
	as.guide/Lflags
	as.guide/Line
	as.guide/Ln
	as.guide/List
	as.guide/Long
	as.guide/Nolist
	as.guide/Octa
	as.guide/Org
	as.guide/Psize
	as.guide/Quad
	as.guide/Sbttl
	as.guide/Scl
	as.guide/Section
	as.guide/Set
	as.guide/Short
	as.guide/Single
	as.guide/Size
	as.guide/Space
	as.guide/Stab
	as.guide/Tag
	as.guide/Text
	as.guide/Title
	as.guide/Type
	as.guide/Val
	as.guide/Word
	as.guide/Deprecated
	as.guide/Machine Dependencies
	as.guide/Vax-Dependent
	as.guide/Vax-Opts
	as.guide/VAX-float
	as.guide/VAX-directives
	as.guide/VAX-opcodes
	as.guide/VAX-branch
	as.guide/VAX-operands
	as.guide/VAX-no
	as.guide/AMD29K-Dependent
	as.guide/AMD29K Options
	as.guide/AMD29K Syntax
	as.guide/AMD29K-Chars
	as.guide/AMD29K-Regs
	as.guide/AMD29K Floating Point
	as.guide/AMD29K Directives
	as.guide/AMD29K Opcodes
	as.guide/H8-300-Dependent
	as.guide/H8-300 Options
	as.guide/H8-300 Syntax
	as.guide/H8-300-Chars
	as.guide/H8-300-Regs
	as.guide/H8-300-Addressing
	as.guide/H8-300 Floating Point
	as.guide/H8-300 Directives
	as.guide/H8-300 Opcodes
	as.guide/H8-500-Dependent
	as.guide/H8-500 Options
	as.guide/H8-500 Syntax
	as.guide/H8-500-Chars
	as.guide/H8-500-Regs
	as.guide/H8-500-Addressing
	as.guide/H8-500 Floating Point
	as.guide/H8-500 Directives
	as.guide/H8-500 Opcodes
	as.guide/SH-Dependent
	as.guide/SH Options
	as.guide/SH Syntax
	as.guide/SH-Chars
	as.guide/SH-Regs
	as.guide/SH-Addressing
	as.guide/SH Floating Point
	as.guide/SH Directives
	as.guide/SH Opcodes
	as.guide/i960-Dependent
	as.guide/Options-i960
	as.guide/Floating Point-i960
	as.guide/Directives-i960
	as.guide/Opcodes for i960
	as.guide/callj-i960
	as.guide/Compare-and-branch-i960
	as.guide/M68K-Dependent
	as.guide/M68K-Opts
	as.guide/M68K-Syntax
	as.guide/M68K-Moto-Syntax
	as.guide/M68K-Float
	as.guide/M68K-Directives
	as.guide/M68K-opcodes
	as.guide/M68K-Branch
	as.guide/M68K-Chars
	as.guide/Sparc-Dependent
	as.guide/Sparc-Opts
	as.guide/Sparc-Float
	as.guide/Sparc-Directives
	as.guide/i386-Dependent
	as.guide/i386-Options
	as.guide/i386-Syntax
	as.guide/i386-Opcodes
	as.guide/i386-Regs
	as.guide/i386-prefixes
	as.guide/i386-Memory
	as.guide/i386-jumps
	as.guide/i386-Float
	as.guide/i386-Notes
	as.guide/Z8000-Dependent
	as.guide/Z8000 Options
	as.guide/Z8000 Syntax
	as.guide/Z8000-Chars
	as.guide/Z8000-Regs
	as.guide/Z8000-Addressing
	as.guide/Z8000 Directives
	as.guide/Z8000 Opcodes
	as.guide/Acknowledgements
	as.guide/Copying
	as.guide/Index

